Beispiel #1
0
def main():

    args = parse_args()

    if len(args.shape) == 1:
        input_shape = (3, args.shape[0], args.shape[0])
    elif len(args.shape) == 2:
        input_shape = (3, ) + tuple(args.shape)
    elif len(args.shape) == 3:
        input_shape = (1, ) + tuple(args.shape)
    else:
        raise ValueError('invalid input shape')

    cfg = Config.fromfile(args.config)
    model = build_classifier(cfg.model)
    model.eval()

    if hasattr(model, 'extract_feat'):
        model.forward = model.extract_feat
    else:
        raise NotImplementedError(
            'FLOPs counter is currently not currently supported with {}'.
            format(model.__class__.__name__))

    flops, params = get_model_complexity_info(model, input_shape)
    split_line = '=' * 30
    print(f'{split_line}\nInput shape: {input_shape}\n'
          f'Flops: {flops}\nParams: {params}\n{split_line}')
    print('!!!Please be cautious if you use the results in papers. '
          'You may need to check if all ops are supported and verify that the '
          'flops computation is correct.')
Beispiel #2
0
def init_model(config, checkpoint=None, device='cuda:0'):
    """Initialize a classifier from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed classifier.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    config.model.pretrained = None
    model = build_classifier(config.model)
    if checkpoint is not None:
        map_loc = 'cpu' if device == 'cpu' else None
        checkpoint = load_checkpoint(model, checkpoint, map_location=map_loc)
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            from mmcls.datasets import ImageNet
            warnings.simplefilter('once')
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use imagenet by default.')
            model.CLASSES = ImageNet.CLASSES
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model
def main():
    args = parse_args()

    # load test results
    outputs = mmcv.load(args.result)
    assert ('pred_score' in outputs and 'pred_class' in outputs
            and 'pred_label' in outputs), \
        'No "pred_label", "pred_score" or "pred_class" in result file, ' \
        'please set "--out-items" in test.py'

    cfg = mmcv.Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    model = build_classifier(cfg.model)

    # build the dataloader
    dataset = build_dataset(cfg.data.test)
    filenames = list()
    for info in dataset.data_infos:
        if info['img_prefix'] is not None:
            filename = osp.join(info['img_prefix'],
                                info['img_info']['filename'])
        else:
            filename = info['img_info']['filename']
        filenames.append(filename)
    gt_labels = list(dataset.get_gt_labels())
    gt_classes = [dataset.CLASSES[x] for x in gt_labels]

    outputs['filename'] = filenames
    outputs['gt_label'] = gt_labels
    outputs['gt_class'] = gt_classes

    outputs_list = list()
    for i in range(len(gt_labels)):
        output = dict()
        for k in outputs.keys():
            output[k] = outputs[k][i]
        outputs_list.append(output)

    # sort result
    outputs_list = sorted(outputs_list, key=lambda x: x['pred_score'])

    success = list()
    fail = list()
    for output in outputs_list:
        if output['pred_label'] == output['gt_label']:
            success.append(output)
        else:
            fail.append(output)

    success = success[:args.topk]
    fail = fail[:args.topk]

    save_imgs(args.out_dir, 'success', success, model)
    save_imgs(args.out_dir, 'fail', fail, model)
Beispiel #4
0
 def test_classifier_loss(self):
     data = self.read_random_data()
     data = scatter(data, ["cuda:0"])
     data = data[0]
     classifier = build_classifier(self.cfg.model)
     classifier = MMDataParallel(module=classifier.cuda(0), device_ids=[0])
     loss = classifier(**data)
     for k, v in loss.items():
         print(k)
         print(v, v.dtype)
         print("---")
Beispiel #5
0
def main():

    args = parse_args()

    if len(args.shape) == 1:
        input_shape = (3, args.shape[0], args.shape[0])
    elif len(args.shape) == 2:
        input_shape = (3, ) + tuple(args.shape)
    else:
        raise ValueError('invalid input shape')

    cfg = Config.fromfile(args.config)

    if args.net_params:
        tag, input_channels, block1, block2, block3, block4, last_channel = args.net_params.split(
            '-')
        input_channels = [int(item) for item in input_channels.split('_')]
        block1 = [int(item) for item in block1.split('_')]
        block2 = [int(item) for item in block2.split('_')]
        block3 = [int(item) for item in block3.split('_')]
        block4 = [int(item) for item in block4.split('_')]
        last_channel = int(last_channel)

        inverted_residual_setting = []
        for item in [block1, block2, block3, block4]:
            for _ in range(item[0]):
                inverted_residual_setting.append([
                    item[1], item[2:-int(len(item) / 2 - 1)],
                    item[-int(len(item) / 2 - 1):]
                ])

        cfg.model.backbone.input_channel = input_channels
        cfg.model.backbone.inverted_residual_setting = inverted_residual_setting
        cfg.model.backbone.last_channel = last_channel
        cfg.model.head.in_channels = last_channel

    model = build_classifier(cfg.model)
    model.eval()

    if hasattr(model, 'extract_feat'):
        model.forward = model.extract_feat
    else:
        raise NotImplementedError(
            'FLOPs counter is currently not currently supported with {}'.
            format(model.__class__.__name__))

    flops, params = get_model_complexity_info(model, input_shape)
    split_line = '=' * 30
    print(f'{split_line}\nInput shape: {input_shape}\n'
          f'Flops: {flops}\nParams: {params}\n{split_line}')
    print('!!!Please be cautious if you use the results in papers. '
          'You may need to check if all ops are supported and verify that the '
          'flops computation is correct.')
def load_model(checkpoint, config):
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    config.model.pretrained = None
    model = build_classifier(config.model)
    checkpoint = load_checkpoint(model, checkpoint, map_location="cpu")
    model.cfg = config  # save the config in the model for convenience
    model.eval()
    return model
def get_flops(cfg, input_shape):
    model = build_classifier(cfg.model)
    model.eval()
    if hasattr(model, 'extract_feat'):
        model.forward = model.extract_feat
    else:
        raise NotImplementedError(
            'FLOPs counter is currently not currently supported with {}'.
            format(model.__class__.__name__))
    buf = io.StringIO()
    all_flops, params = get_model_complexity_info(model, input_shape, print_per_layer_stat=True, as_strings=False, ost=buf)
    buf = buf.getvalue()

    return all_flops/1e9
Beispiel #8
0
def load_model(checkpoint, config):
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    config.model.pretrained = None
    model = build_classifier(config.model)
    checkpoint = load_checkpoint(model, checkpoint)
    model.cfg = config  # save the config in the model for convenience
    if args.do_plda:
        print("---INFO---: Far layer selected for plda")
        model.neck.embedding[1] = torch.nn.Identity()
    model.eval()
    return model
Beispiel #9
0
def convert(config_file,
            ckp_file,
            onnx_file,
            input_size=(224, 224, 3),
            device='cpu'):
    # Read mmdetection model
    config = mmcv.Config.fromfile(config_file)
    mmcls_model = build_classifier(config.model)
    # Init weights:
    # if ckp_file is None:
    #     mmcls_model.init_weights()
    # Set forward function to dummy
    if hasattr(mmcls_model, 'forward_test'):
        mmcls_model.forward = mmcls_model.forward_test

    # Generate dummy data
    if len(input_size) == 0:
        input_size = (224, 224, 3)
    h, w, c = input_size
    x = torch.rand(1, c, h, w, device=torch.device(device))

    # Convert to onnx
    with torch.no_grad():
        torch.onnx.export(mmcls_model,
                          x,
                          onnx_file,
                          verbose=False,
                          input_names=['input'],
                          opset_version=9)  # 9

    # Deal with shared weights
    rename_share_weights(onnx_file)

    # Simplify nodes
    ox_model = onnx.load(onnx_file)
    model_simp, check = simplify(ox_model)
    assert check, 'Simplified ONNX model could not be validated'
    onnx.save(model_simp, onnx_file)

    if isinstance(config_file, str):
        print('Convert {} to {} success'.format(config_file, onnx_file))
    else:
        print('Convert to {} success'.format(onnx_file))
    return (config_file, onnx_file)
def init_model(config, checkpoint=None, device='cuda:0', options=None):
    """Initialize a classifier from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.
        options (dict): Options to override some settings in the used config.

    Returns:
        nn.Module: The constructed classifier.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    if options is not None:
        config.merge_from_dict(options)
    config.model.pretrained = None
    model = build_classifier(config.model)
    if checkpoint is not None:
        # Mapping the weights to GPU may cause unexpected video memory leak
        # which refers to https://github.com/open-mmlab/mmdetection/pull/6405
        checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
        if 'CLASSES' in checkpoint.get('meta', {}):
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            from mmcls.datasets import ImageNet
            warnings.simplefilter('once')
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use imagenet by default.')
            model.CLASSES = ImageNet.CLASSES
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model
                           stem_channels=32,
                           base_channels=32,
                           depth=34,
                           num_stages=4,
                           out_indices=(3, ),
                           style='pytorch',
                           with_cp=True,
                           norm_cfg=dict(type='BN',
                                         requires_grad=True,
                                         momentum=0.5)),
             neck=dict(type='ECAPA_ASP',
                       emb_dim=256,
                       in_plane=2816,
                       emb_bn=True,
                       activation_type="relu"),
             head=dict(type='AMSoftmaxClsHead',
                       num_classes=5994,
                       in_channels=256,
                       loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
                       topk=(1, 5)))

if __name__ == "__main__":
    import torch
    from mmcls.models import build_backbone, build_neck, build_classifier
    with torch.no_grad():
        model = build_classifier(model)
        #print(model)
        input = torch.rand(2, 200, 81)
        gt_label = torch.LongTensor([1, 2])
        print(model(input, gt_label=gt_label))
Beispiel #12
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    # set multi-process settings
    setup_multi_processes(cfg)

    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None

    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids[0:1]
        warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. '
                      'Because we only support single GPU mode in '
                      'non-distributed testing. Use the first GPU '
                      'in `gpu_ids` now.')
    else:
        cfg.gpu_ids = [args.gpu_id]

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    dataset = build_dataset(cfg.data.test, default_args=dict(test_mode=True))
    # the extra round_up data will be removed during gpu/cpu collect
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=cfg.data.samples_per_gpu,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False,
                                   round_up=True)

    # build the model and load checkpoint
    model = build_classifier(cfg.model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')

    if 'CLASSES' in checkpoint.get('meta', {}):
        CLASSES = checkpoint['meta']['CLASSES']
    else:
        from mmcls.datasets import ImageNet
        warnings.simplefilter('once')
        warnings.warn('Class names are not saved in the checkpoint\'s '
                      'meta data, use imagenet by default.')
        CLASSES = ImageNet.CLASSES

    if not distributed:
        if args.device == 'cpu':
            model = model.cpu()
        else:
            model = MMDataParallel(model, device_ids=cfg.gpu_ids)
            if not model.device_ids:
                assert mmcv.digit_version(mmcv.__version__) >= (1, 4, 4), \
                    'To test with CPU, please confirm your mmcv version ' \
                    'is not lower than v1.4.4'
        model.CLASSES = CLASSES
        show_kwargs = {} if args.show_options is None else args.show_options
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                                  **show_kwargs)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        results = {}
        logger = get_root_logger()
        if args.metrics:
            eval_results = dataset.evaluate(results=outputs,
                                            metric=args.metrics,
                                            metric_options=args.metric_options,
                                            logger=logger)
            results.update(eval_results)
            for k, v in eval_results.items():
                if isinstance(v, np.ndarray):
                    v = [round(out, 2) for out in v.tolist()]
                elif isinstance(v, Number):
                    v = round(v, 2)
                else:
                    raise ValueError(f'Unsupport metric type: {type(v)}')
                print(f'\n{k} : {v}')
        if args.out:
            if 'none' not in args.out_items:
                scores = np.vstack(outputs)
                pred_score = np.max(scores, axis=1)
                pred_label = np.argmax(scores, axis=1)
                pred_class = [CLASSES[lb] for lb in pred_label]
                res_items = {
                    'class_scores': scores,
                    'pred_score': pred_score,
                    'pred_label': pred_label,
                    'pred_class': pred_class
                }
                if 'all' in args.out_items:
                    results.update(res_items)
                else:
                    for key in args.out_items:
                        results[key] = res_items[key]
            print(f'\ndumping results to {args.out}')
            mmcv.dump(results, args.out)
Beispiel #13
0
def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)

    if args.options is not None:
        cfg.merge_from_dict(args.options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])

    if args.aml:
        data_store = os.environ['AZUREML_DATAREFERENCE_{}'.format(
            args.aml_data_store)]
        parse(cfg, data_store)
        if cfg.resume_from is not None:
            cfg.resume_from = os.path.join(data_store,
                                           args.aml_work_dir_prefix,
                                           cfg.resume_from)
        cfg.work_dir = os.path.join(data_store, args.aml_work_dir_prefix,
                                    cfg.work_dir)
        print('work_dir: ', cfg.work_dir)
        if 'data' in cfg.model.pretrained:
            cfg.model.pretrained = os.path.join(data_store,
                                                cfg.model.pretrained)
    # if not args.aml:
    #     # work_dir is determined in this priority: CLI > segment in file > filename
    #     if args.work_dir is not None:
    #         # update configs according to CLI args if args.work_dir is not None
    #         cfg.work_dir = args.work_dir
    #     elif cfg.get('work_dir', None) is None:
    #         # use config filename as default work_dir if cfg.work_dir is None
    #         cfg.work_dir = osp.join('./work_dirs',
    #                                 osp.splitext(osp.basename(args.config))[0])
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids
    else:
        cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)

    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # update gpu num
    if dist.is_initialized():
        cfg.gpus = dist.get_world_size()
    else:
        cfg.gpus = args.gpus

    if args.autoscale_lr:
        # apply the linear scaling rule (https://arxiv.org/abs/1706.02677)

        cfg.optimizer['lr'] = cfg.optimizer[
            'lr'] * cfg.gpus / 8 * cfg.data.samples_per_gpu / 32

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config:\n{cfg.pretty_text}')

    # set random seeds
    if args.seed is not None:
        logger.info(f'Set random seed to {args.seed}, '
                    f'deterministic: {args.deterministic}')
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta['seed'] = args.seed

    model = build_classifier(cfg.model)

    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
        val_dataset.pipeline = cfg.data.train.pipeline
        datasets.append(build_dataset(val_dataset))
    if cfg.checkpoint_config is not None:
        # save mmcls version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(mmcls_version=__version__,
                                          config=cfg.pretty_text,
                                          CLASSES=datasets[0].CLASSES)
    # add an attribute for visualization convenience
    train_model(model,
                datasets,
                cfg,
                distributed=distributed,
                validate=(not args.no_validate),
                timestamp=timestamp,
                meta=meta)
def main():
    print("--------> 1")
    args = parse_args()

    print("--------> 2")
    cfg = Config.fromfile(args.config)

    print("--------> 3")
    if args.options is not None:
        cfg.merge_from_dict(args.options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    print("--------> 4")
    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids
    else:
        cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)

    print("--------> 5")
    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)
        _, world_size = get_dist_info()
        cfg.gpu_ids = range(world_size)

    print("--------> 6")
    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))

    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    print("--------> 7")
    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
    cfg_pretty_text = cfg.pretty_text
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config:\n{cfg_pretty_text}')

    # set random seeds
    if args.seed is not None:
        logger.info(f'Set random seed to {args.seed}, '
                    f'deterministic: {args.deterministic}')
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta['seed'] = args.seed

    model = build_classifier(cfg.model)

    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
        val_dataset.pipeline = cfg.data.train.pipeline
        datasets.append(build_dataset(val_dataset))
    if cfg.checkpoint_config is not None:
        # save mmcls version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(mmcls_version=__version__,
                                          config=cfg_pretty_text,
                                          CLASSES=datasets[0].CLASSES)
        model.CLASSES = datasets[0].CLASSES
    # add an attribute for visualization convenience
    train_model(model,
                datasets,
                cfg,
                distributed=distributed,
                validate=(not args.no_validate),
                timestamp=timestamp,
                device='cpu' if args.device == 'cpu' else 'cuda',
                meta=meta)

if __name__ == '__main__':
    args = parse_args()

    if len(args.shape) == 1:
        input_shape = (1, 3, args.shape[0], args.shape[0])
    elif len(args.shape) == 2:
        input_shape = (
            1,
            3,
        ) + tuple(args.shape)
    else:
        raise ValueError('invalid input shape')

    cfg = mmcv.Config.fromfile(args.config)
    cfg.model.pretrained = None

    # build the model and load checkpoint
    classifier = build_classifier(cfg.model)

    if args.checkpoint:
        load_checkpoint(classifier, args.checkpoint, map_location='cpu')

    # conver model to TorchScript file
    pytorch2torchscript(
        classifier,
        input_shape,
        output_file=args.output_file,
        verify=args.verify)
Beispiel #16
0
def train_single_fold(args, cfg, fold, distributed, seed):
    # create the work_dir for the fold
    work_dir = osp.join(cfg.work_dir, f'fold{fold}')
    cfg.work_dir = work_dir

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))

    # wrap the dataset cfg
    train_dataset = dict(
        type='KFoldDataset',
        fold=fold,
        dataset=cfg.data.train,
        num_splits=args.num_splits,
        seed=seed,
    )
    val_dataset = dict(
        type='KFoldDataset',
        fold=fold,
        # Use the same dataset with training.
        dataset=copy.deepcopy(cfg.data.train),
        num_splits=args.num_splits,
        seed=seed,
        test_mode=True,
    )
    val_dataset['dataset']['pipeline'] = cfg.data.val.pipeline
    cfg.data.train = train_dataset
    cfg.data.val = val_dataset
    cfg.data.test = val_dataset

    # dump config
    stem, suffix = osp.basename(args.config).rsplit('.', 1)
    cfg.dump(osp.join(cfg.work_dir, f'{stem}_fold{fold}.{suffix}'))
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config:\n{cfg.pretty_text}')
    logger.info(
        f'-------- Cross-validation: [{fold+1}/{args.num_splits}] -------- ')

    # set random seeds
    # Use different seed in different folds
    logger.info(f'Set random seed to {seed + fold}, '
                f'deterministic: {args.deterministic}')
    set_random_seed(seed + fold, deterministic=args.deterministic)
    cfg.seed = seed + fold
    meta['seed'] = seed + fold

    model = build_classifier(cfg.model)
    model.init_weights()

    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
        val_dataset.pipeline = cfg.data.train.pipeline
        datasets.append(build_dataset(val_dataset))
    meta.update(
        dict(mmcls_version=__version__,
             config=cfg.pretty_text,
             CLASSES=datasets[0].CLASSES,
             kfold=dict(fold=fold, num_splits=args.num_splits)))
    # add an attribute for visualization convenience
    train_model(model,
                datasets,
                cfg,
                distributed=distributed,
                validate=(not args.no_validate),
                timestamp=timestamp,
                device='cpu' if args.device == 'cpu' else 'cuda',
                meta=meta)
Beispiel #17
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    if args.options is not None:
        cfg.merge_from_dict(args.options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=cfg.data.samples_per_gpu,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False,
                                   round_up=False)

    # build the model and load checkpoint
    model = build_classifier(cfg.model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.metrics:
            results = dataset.evaluate(outputs, args.metrics,
                                       args.metric_options)
            for k, v in results.items():
                print(f'\n{k} : {v:.2f}')
        else:
            warnings.warn('Evaluation metrics are not specified.')
            scores = np.vstack(outputs)
            pred_score = np.max(scores, axis=1)
            pred_label = np.argmax(scores, axis=1)
            if 'CLASSES' in checkpoint['meta']:
                CLASSES = checkpoint['meta']['CLASSES']
            else:
                from mmcls.datasets import ImageNet
                warnings.simplefilter('once')
                warnings.warn('Class names are not saved in the checkpoint\'s '
                              'meta data, use imagenet by default.')
                CLASSES = ImageNet.CLASSES
            pred_class = [CLASSES[lb] for lb in pred_label]
            results = {
                'pred_score': pred_score,
                'pred_label': pred_label,
                'pred_class': pred_class
            }
            if not args.out:
                print('\nthe predicted result for the first element is '
                      f'pred_score = {pred_score[0]:.2f}, '
                      f'pred_label = {pred_label[0]} '
                      f'and pred_class = {pred_class[0]}. '
                      'Specify --out to save all results to files.')
    if args.out and rank == 0:
        print(f'\nwriting results to {args.out}')
        mmcv.dump(results, args.out)
Beispiel #18
0
def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    # set multi-process settings
    setup_multi_processes(cfg)

    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    if args.gpus is not None:
        cfg.gpu_ids = range(1)
        warnings.warn('`--gpus` is deprecated because we only support '
                      'single GPU mode in non-distributed training. '
                      'Use `gpus=1` now.')
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids[0:1]
        warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. '
                      'Because we only support single GPU mode in '
                      'non-distributed training. Use the first GPU '
                      'in `gpu_ids` now.')
    if args.gpus is None and args.gpu_ids is None:
        cfg.gpu_ids = [args.gpu_id]

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)
        _, world_size = get_dist_info()
        cfg.gpu_ids = range(world_size)

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # dump config
    cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config:\n{cfg.pretty_text}')

    # set random seeds
    seed = init_random_seed(args.seed)
    logger.info(f'Set random seed to {seed}, '
                f'deterministic: {args.deterministic}')
    set_random_seed(seed, deterministic=args.deterministic)
    cfg.seed = seed
    meta['seed'] = seed

    model = build_classifier(cfg.model)
    model.init_weights()

    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
        val_dataset.pipeline = cfg.data.train.pipeline
        datasets.append(build_dataset(val_dataset))

    # save mmcls version, config file content and class names in
    # runner as meta data
    meta.update(
        dict(mmcls_version=__version__,
             config=cfg.pretty_text,
             CLASSES=datasets[0].CLASSES))

    # add an attribute for visualization convenience
    train_model(model,
                datasets,
                cfg,
                distributed=distributed,
                validate=(not args.no_validate),
                timestamp=timestamp,
                device='cpu' if args.device == 'cpu' else 'cuda',
                meta=meta)
Beispiel #19
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=cfg.data.samples_per_gpu,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False,
                                   round_up=False)

    # build the model and load checkpoint
    model = build_classifier(cfg.model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    _ = load_checkpoint(model, args.checkpoint, map_location='cpu')

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        nums = []
        results = {}
        for output in outputs:
            nums.append(output['num_samples'].item())
            for topk, v in output['accuracy'].items():
                if topk not in results:
                    results[topk] = []
                results[topk].append(v.item())
        assert sum(nums) == len(dataset)
        for topk, accs in results.items():
            avg_acc = np.average(accs, weights=nums)
            print(f'\n{topk} accuracy: {avg_acc:.2f}')
    if args.out and rank == 0:
        print(f'\nwriting results to {args.out}')
        mmcv.dump(outputs, args.out)
Beispiel #20
0
 def test_classifier(self):
     classifier = build_classifier(self.cfg.model)
     img_w, img_h = 224, 224
     input_x = torch.randn(4, 3, img_h, img_w)
     yaw, pitch, roll = classifier.simple_test(input_x)
     print(F"yaw: {yaw}, pitch: {pitch}, roll: {roll}")
Beispiel #21
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    if args.options is not None:
        cfg.merge_from_dict(args.options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    assert args.metrics or args.out, \
        'Please specify at least one of output path and evaluation metrics.'

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    dataset = build_dataset(cfg.data.test)
    # the extra round_up data will be removed during gpu/cpu collect
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=cfg.data.samples_per_gpu,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False,
                                   round_up=True)

    # build the model and load checkpoint
    model = build_classifier(cfg.model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')

    if 'CLASSES' in checkpoint.get('meta', {}):
        CLASSES = checkpoint['meta']['CLASSES']
    else:
        from mmcls.datasets import ImageNet
        warnings.simplefilter('once')
        warnings.warn('Class names are not saved in the checkpoint\'s '
                      'meta data, use imagenet by default.')
        CLASSES = ImageNet.CLASSES

    if not distributed:
        if args.device == 'cpu':
            model = model.cpu()
        else:
            model = MMDataParallel(model, device_ids=[0])
        model.CLASSES = CLASSES
        show_kwargs = {} if args.show_options is None else args.show_options
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                                  **show_kwargs)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        results = {}
        if args.metrics:
            eval_results = dataset.evaluate(outputs, args.metrics,
                                            args.metric_options)
            results.update(eval_results)
            for k, v in eval_results.items():
                print(f'\n{k} : {v:.2f}')
        if args.out:
            scores = np.vstack(outputs)
            pred_score = np.max(scores, axis=1)
            pred_label = np.argmax(scores, axis=1)
            pred_class = [CLASSES[lb] for lb in pred_label]
            results.update({
                'class_scores': scores,
                'pred_score': pred_score,
                'pred_label': pred_label,
                'pred_class': pred_class
            })
            print(f'\ndumping results to {args.out}')
            mmcv.dump(results, args.out)
Beispiel #22
0
def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
    if args.options is not None:
        cfg.merge_from_dict(args.options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    if args.net_params:
        tag, input_channels, block1, block2, block3, block4, last_channel = args.net_params.split('-')
        input_channels = [int(item) for item in input_channels.split('_')]
        block1 = [int(item) for item in block1.split('_')]
        block2 = [int(item) for item in block2.split('_')]
        block3 = [int(item) for item in block3.split('_')]
        block4 = [int(item) for item in block4.split('_')]
        last_channel = int(last_channel)

        inverted_residual_setting = []
        for item in [block1, block2, block3, block4]:
            for _ in range(item[0]):
                inverted_residual_setting.append([item[1], item[2:-int(len(item)/2-1)], item[-int(len(item)/2-1):]])

        cfg.model.backbone.input_channel = input_channels
        cfg.model.backbone.inverted_residual_setting = inverted_residual_setting
        cfg.model.backbone.last_channel = last_channel
        cfg.model.head.in_channels = last_channel

    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids
    else:
        cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)

    if args.autoscale_lr:
        # apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
        cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    if args.net_params:
        log_file = osp.join(cfg.work_dir, f'{args.net_params}.log')
    else:
        log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config:\n{cfg.pretty_text}')

    # set random seeds
    if args.seed is not None:
        logger.info(f'Set random seed to {args.seed}, '
                    f'deterministic: {args.deterministic}')
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta['seed'] = args.seed

    model = build_classifier(cfg.model)

    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
        val_dataset.pipeline = cfg.data.train.pipeline
        datasets.append(build_dataset(val_dataset))
    if cfg.checkpoint_config is not None:
        # save mmcls version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
            mmcls_version=__version__,
            config=cfg.pretty_text,
            CLASSES=datasets[0].CLASSES)
    # add an attribute for visualization convenience
    train_model(
        model,
        datasets,
        cfg,
        distributed=distributed,
        validate=(not args.no_validate),
        timestamp=timestamp,
        meta=meta)