Beispiel #1
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 dcn=None,
                 plugins=None):
        """Bottleneck block for ResNet.

        If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
        it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottleneck, self).__init__()
        assert style in ['pytorch', 'caffe']
        assert dcn is None or isinstance(dcn, dict)
        assert plugins is None or isinstance(plugins, list)
        if plugins is not None:
            allowed_position = ['after_conv1', 'after_conv2', 'after_conv3']
            assert all(p['position'] in allowed_position for p in plugins)

        self.inplanes = inplanes
        self.planes = planes
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.dcn = dcn
        self.with_dcn = dcn is not None
        self.plugins = plugins
        self.with_plugins = plugins is not None

        if self.with_plugins:
            # collect plugins for conv1/conv2/conv3
            self.after_conv1_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv1'
            ]
            self.after_conv2_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv2'
            ]
            self.after_conv3_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv3'
            ]

        if self.style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(norm_cfg,
                                                  planes * self.expansion,
                                                  postfix=3)

        self.conv1 = build_conv_layer(conv_cfg,
                                      inplanes,
                                      planes,
                                      kernel_size=1,
                                      stride=self.conv1_stride,
                                      bias=False)
        self.add_module(self.norm1_name, norm1)
        fallback_on_stride = False
        if self.with_dcn:
            fallback_on_stride = dcn.pop('fallback_on_stride', False)
        if not self.with_dcn or fallback_on_stride:
            self.conv2 = build_conv_layer(conv_cfg,
                                          planes,
                                          planes,
                                          kernel_size=3,
                                          stride=self.conv2_stride,
                                          padding=dilation,
                                          dilation=dilation,
                                          bias=False)
        else:
            assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
            self.conv2 = build_conv_layer(dcn,
                                          planes,
                                          planes,
                                          kernel_size=3,
                                          stride=self.conv2_stride,
                                          padding=dilation,
                                          dilation=dilation,
                                          bias=False)

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(conv_cfg,
                                      planes,
                                      planes * self.expansion,
                                      kernel_size=1,
                                      bias=False)
        self.add_module(self.norm3_name, norm3)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

        if self.with_plugins:
            self.after_conv1_plugin_names = self.make_block_plugins(
                planes, self.after_conv1_plugins)
            self.after_conv2_plugin_names = self.make_block_plugins(
                planes, self.after_conv2_plugins)
            self.after_conv3_plugin_names = self.make_block_plugins(
                planes * self.expansion, self.after_conv3_plugins)
Beispiel #2
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 dcn=None,
                 gcb=None,
                 gen_attention=None):
        """Bottleneck block for ResNet.

        If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
        it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(BottleneckV1s, self).__init__()
        assert style in ['pytorch', 'caffe']
        assert dcn is None or isinstance(dcn, dict)
        assert gcb is None or isinstance(gcb, dict)
        assert gen_attention is None or isinstance(gen_attention, dict)

        self.inplanes = inplanes
        self.planes = planes
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.dcn = dcn
        self.with_dcn = dcn is not None
        self.gcb = gcb
        self.with_gcb = gcb is not None
        self.gen_attention = gen_attention
        self.with_gen_attention = gen_attention is not None

        if self.style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            norm_cfg, planes * self.expansion, postfix=3)

        self.conv1 = build_conv_layer(
            conv_cfg,
            inplanes,
            planes,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        fallback_on_stride = False
        self.with_modulated_dcn = False
        if self.with_dcn:
            fallback_on_stride = dcn.get('fallback_on_stride', False)
            self.with_modulated_dcn = dcn.get('modulated', False)
        if not self.with_dcn or fallback_on_stride:
            self.conv2 = build_conv_layer(
                conv_cfg,
                planes,
                planes,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation,
                bias=False)
        else:
            assert conv_cfg is None, 'conv_cfg must be None for DCN'
            self.deformable_groups = dcn.get('deformable_groups', 1)
            if not self.with_modulated_dcn:
                conv_op = DeformConv
                offset_channels = 18
            else:
                conv_op = ModulatedDeformConv
                offset_channels = 27
            self.conv2_offset = nn.Conv2d(
                planes,
                self.deformable_groups * offset_channels,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation)
            self.conv2 = conv_op(
                planes,
                planes,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation,
                deformable_groups=self.deformable_groups,
                bias=False)
        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(
            conv_cfg,
            planes,
            planes * self.expansion,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

        if self.with_gcb:
            gcb_inplanes = planes * self.expansion
            self.context_block = ContextBlock(inplanes=gcb_inplanes, **gcb)

        # gen_attention
        if self.with_gen_attention:
            self.gen_attention_block = GeneralizedAttention(
                planes, **gen_attention)
Beispiel #3
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 expansion=4,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN')):
        # Protect mutable default arguments
        norm_cfg = copy.deepcopy(norm_cfg)
        super().__init__()
        assert style in ['pytorch', 'caffe']

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.expansion = expansion
        assert out_channels % expansion == 0
        self.mid_channels = out_channels // expansion
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg

        if self.style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(
            norm_cfg, self.mid_channels, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(
            norm_cfg, self.mid_channels, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            norm_cfg, out_channels, postfix=3)

        self.conv1 = build_conv_layer(
            conv_cfg,
            in_channels,
            self.mid_channels,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(
            conv_cfg,
            self.mid_channels,
            self.mid_channels,
            kernel_size=3,
            stride=self.conv2_stride,
            padding=dilation,
            dilation=dilation,
            bias=False)

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(
            conv_cfg,
            self.mid_channels,
            out_channels,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
Beispiel #4
0
    def __init__(self,
                 in_channels=3,
                 out_channels=17,
                 num_deconv_layers=3,
                 num_deconv_filters=(256, 256, 256),
                 num_deconv_kernels=(4, 4, 4),
                 extra=None,
                 in_index=0,
                 input_transform=None,
                 align_corners=False,
                 loss_keypoint=None):
        super().__init__()

        self.in_channels = in_channels
        self.loss = build_loss(loss_keypoint)

        self._init_inputs(in_channels, in_index, input_transform)
        self.in_index = in_index
        self.align_corners = align_corners

        if extra is not None and not isinstance(extra, dict):
            raise TypeError('extra should be dict or None.')

        if num_deconv_layers > 0:
            self.deconv_layers = self._make_deconv_layer(
                num_deconv_layers,
                num_deconv_filters,
                num_deconv_kernels,
            )
        elif num_deconv_layers == 0:
            self.deconv_layers = nn.Identity()
        else:
            raise ValueError(
                f'num_deconv_layers ({num_deconv_layers}) should >= 0.')

        identity_final_layer = False
        if extra is not None and 'final_conv_kernel' in extra:
            assert extra['final_conv_kernel'] in [0, 1, 3]
            if extra['final_conv_kernel'] == 3:
                padding = 1
            elif extra['final_conv_kernel'] == 1:
                padding = 0
            else:
                # 0 for Identity mapping.
                identity_final_layer = True
            kernel_size = extra['final_conv_kernel']
        else:
            kernel_size = 1
            padding = 0

        if identity_final_layer:
            self.final_layer = nn.Identity()
        else:
            conv_channels = num_deconv_filters[
                -1] if num_deconv_layers > 0 else self.in_channels

            layers = []
            if extra is not None:
                num_conv_layers = extra.get('num_conv_layers', 0)
                num_conv_kernels = extra.get('num_conv_kernels',
                                             [1] * num_conv_layers)

                for i in range(num_conv_layers):
                    layers.append(
                        build_conv_layer(dict(type='Conv2d'),
                                         in_channels=conv_channels,
                                         out_channels=conv_channels,
                                         kernel_size=num_conv_kernels[i],
                                         stride=1,
                                         padding=(num_conv_kernels[i] - 1) //
                                         2))
                    layers.append(
                        build_norm_layer(dict(type='BN'), conv_channels)[1])
                    layers.append(nn.ReLU(inplace=True))

            layers.append(
                build_conv_layer(cfg=dict(type='Conv2d'),
                                 in_channels=conv_channels,
                                 out_channels=out_channels,
                                 kernel_size=kernel_size,
                                 stride=1,
                                 padding=padding))

            if len(layers) > 1:
                self.final_layer = nn.Sequential(*layers)
            else:
                self.final_layer = layers[0]
Beispiel #5
0
    def __init__(self,
                 extra,
                 in_channels=3,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 norm_eval=True,
                 with_cp=False,
                 zero_init_residual=False,
                 multiscale_output=True,
                 pretrained=None,
                 init_cfg=None):
        super(HRNet, self).__init__(init_cfg)

        self.pretrained = pretrained
        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be setting at the same time'
        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is None:
            if init_cfg is None:
                self.init_cfg = [
                    dict(type='Kaiming', layer='Conv2d'),
                    dict(type='Constant',
                         val=1,
                         layer=['_BatchNorm', 'GroupNorm'])
                ]
        else:
            raise TypeError('pretrained must be a str or None')

        # Assert configurations of 4 stages are in extra
        assert 'stage1' in extra and 'stage2' in extra \
               and 'stage3' in extra and 'stage4' in extra
        # Assert whether the length of `num_blocks` and `num_channels` are
        # equal to `num_branches`
        for i in range(4):
            cfg = extra[f'stage{i + 1}']
            assert len(cfg['num_blocks']) == cfg['num_branches'] and \
                   len(cfg['num_channels']) == cfg['num_branches']

        self.extra = extra
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.norm_eval = norm_eval
        self.with_cp = with_cp
        self.zero_init_residual = zero_init_residual

        # stem net
        self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2)

        self.conv1 = build_conv_layer(self.conv_cfg,
                                      in_channels,
                                      64,
                                      kernel_size=3,
                                      stride=2,
                                      padding=1,
                                      bias=False)

        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(self.conv_cfg,
                                      64,
                                      64,
                                      kernel_size=3,
                                      stride=2,
                                      padding=1,
                                      bias=False)

        self.add_module(self.norm2_name, norm2)
        self.relu = nn.ReLU(inplace=True)

        # stage 1
        self.stage1_cfg = self.extra['stage1']
        num_channels = self.stage1_cfg['num_channels'][0]
        block_type = self.stage1_cfg['block']
        num_blocks = self.stage1_cfg['num_blocks'][0]

        block = self.blocks_dict[block_type]
        stage1_out_channels = num_channels * block.expansion
        self.layer1 = self._make_layer(block, 64, num_channels, num_blocks)

        # stage 2
        self.stage2_cfg = self.extra['stage2']
        num_channels = self.stage2_cfg['num_channels']
        block_type = self.stage2_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [channel * block.expansion for channel in num_channels]
        self.transition1 = self._make_transition_layer([stage1_out_channels],
                                                       num_channels)
        self.stage2, pre_stage_channels = self._make_stage(
            self.stage2_cfg, num_channels)

        # stage 3
        self.stage3_cfg = self.extra['stage3']
        num_channels = self.stage3_cfg['num_channels']
        block_type = self.stage3_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [channel * block.expansion for channel in num_channels]
        self.transition2 = self._make_transition_layer(pre_stage_channels,
                                                       num_channels)
        self.stage3, pre_stage_channels = self._make_stage(
            self.stage3_cfg, num_channels)

        # stage 4
        self.stage4_cfg = self.extra['stage4']
        num_channels = self.stage4_cfg['num_channels']
        block_type = self.stage4_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [channel * block.expansion for channel in num_channels]
        self.transition3 = self._make_transition_layer(pre_stage_channels,
                                                       num_channels)
        self.stage4, pre_stage_channels = self._make_stage(
            self.stage4_cfg, num_channels, multiscale_output=multiscale_output)
    def __init__(self,
                 in_channels,
                 base_channels=64,
                 num_conv=3,
                 norm_cfg=dict(type='BN'),
                 init_cfg=dict(type='normal', gain=0.02)):
        super().__init__()
        assert isinstance(norm_cfg, dict), ("'norm_cfg' should be dict, but"
                                            f'got {type(norm_cfg)}')
        assert 'type' in norm_cfg, "'norm_cfg' must have key 'type'"
        # We use norm layers in the patch discriminator.
        # Only for IN, use bias since it does not have affine parameters.
        use_bias = norm_cfg['type'] == 'IN'

        kernel_size = 4
        padding = 1

        # input layer
        sequence = [
            ConvModule(in_channels=in_channels,
                       out_channels=base_channels,
                       kernel_size=kernel_size,
                       stride=2,
                       padding=padding,
                       bias=True,
                       norm_cfg=None,
                       act_cfg=dict(type='LeakyReLU', negative_slope=0.2))
        ]

        # stacked intermediate layers,
        # gradually increasing the number of filters
        multiple_now = 1
        multiple_prev = 1
        for n in range(1, num_conv):
            multiple_prev = multiple_now
            multiple_now = min(2**n, 8)
            sequence += [
                ConvModule(in_channels=base_channels * multiple_prev,
                           out_channels=base_channels * multiple_now,
                           kernel_size=kernel_size,
                           stride=2,
                           padding=padding,
                           bias=use_bias,
                           norm_cfg=norm_cfg,
                           act_cfg=dict(type='LeakyReLU', negative_slope=0.2))
            ]
        multiple_prev = multiple_now
        multiple_now = min(2**num_conv, 8)
        sequence += [
            ConvModule(in_channels=base_channels * multiple_prev,
                       out_channels=base_channels * multiple_now,
                       kernel_size=kernel_size,
                       stride=1,
                       padding=padding,
                       bias=use_bias,
                       norm_cfg=norm_cfg,
                       act_cfg=dict(type='LeakyReLU', negative_slope=0.2))
        ]

        # output one-channel prediction map
        sequence += [
            build_conv_layer(dict(type='Conv2d'),
                             base_channels * multiple_now,
                             1,
                             kernel_size=kernel_size,
                             stride=1,
                             padding=padding)
        ]

        self.model = nn.Sequential(*sequence)
        self.init_type = 'normal' if init_cfg is None else init_cfg.get(
            'type', 'normal')
        self.init_gain = 0.02 if init_cfg is None else init_cfg.get(
            'gain', 0.02)
Beispiel #7
0
    def __init__(self,
                 #in_channels,
                 #out_channels,
                 inplanes,
                 planes,
                 base_channels=64,
                 groups=32,
                 width_per_group=4,
                 **kwargs):
        in_channels = inplanes
        out_channels = planes * self.expansion
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.mid_channels = planes

        super(Bottleneck, self).__init__(in_channels, out_channels, **kwargs)
        self.groups = groups
        self.width_per_group = width_per_group

        # For ResNet bottleneck, middle channels are determined by expansion
        # and out_channels, but for ResNeXt bottleneck, it is determined by
        # groups and width_per_group and the stage it is located in.
        if groups != 1:
            assert self.mid_channels % base_channels == 0
            self.mid_channels = (
                groups * width_per_group * self.mid_channels // base_channels)

        self.norm1_name, norm1 = build_norm_layer(
            self.norm_cfg, self.mid_channels, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(
            self.norm_cfg, self.mid_channels, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            self.norm_cfg, self.out_channels, postfix=3)

        self.conv1 = build_conv_layer(
            self.conv_cfg,
            self.in_channels,
            self.mid_channels,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(
            self.conv_cfg,
            self.mid_channels,
            self.mid_channels,
            kernel_size=3,
            stride=self.conv2_stride,
            padding=self.dilation,
            dilation=self.dilation,
            groups=groups,
            bias=False)

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(
            self.conv_cfg,
            self.mid_channels,
            self.out_channels,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)
Beispiel #8
0
    def __init__(self,
                 block,
                 inplanes,
                 planes,
                 num_blocks,
                 stride=1,
                 dilation=1,
                 avg_down=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 downsample_first=True,
                 **kwargs):
        self.block = block

        if stride != 1 or inplanes != planes * block.expansion:
            if stride == 1 and dilation == 1:
                kernel_size = 1
                dd = 1
                padding = 0
            else:
                kernel_size = 3
                if dilation > 1:
                    dd = dilation // 2
                    padding = dd
                else:
                    dd = 1
                    padding = 0
            downsample = nn.Sequential(
                build_conv_layer(conv_cfg,
                                 inplanes,
                                 planes * block.expansion,
                                 kernel_size=kernel_size,
                                 stride=stride,
                                 padding=padding,
                                 dilation=dd,
                                 bias=False),
                build_norm_layer(norm_cfg, planes * block.expansion)[1])

        layers = []
        if downsample_first:
            layers.append(
                block(inplanes=inplanes,
                      planes=planes,
                      stride=stride,
                      dilation=dilation,
                      downsample=downsample,
                      conv_cfg=conv_cfg,
                      norm_cfg=norm_cfg,
                      **kwargs))
            inplanes = planes * block.expansion
            for _ in range(1, num_blocks):
                layers.append(
                    block(inplanes=inplanes,
                          planes=planes,
                          stride=1,
                          dilation=dilation,
                          conv_cfg=conv_cfg,
                          norm_cfg=norm_cfg,
                          **kwargs))

        else:  # downsample_first=False is for HourglassModule
            for _ in range(num_blocks - 1):
                layers.append(
                    block(inplanes=inplanes,
                          planes=inplanes,
                          stride=1,
                          dilation=dilation,
                          conv_cfg=conv_cfg,
                          norm_cfg=norm_cfg,
                          **kwargs))
            layers.append(
                block(inplanes=inplanes,
                      planes=planes,
                      stride=stride,
                      dilation=dilation,
                      downsample=downsample,
                      conv_cfg=conv_cfg,
                      norm_cfg=norm_cfg,
                      **kwargs))
        super(SOTResLayer, self).__init__(*layers)
Beispiel #9
0
    def __init__(
        self,
        in_channels=3,
        embed_dims=768,
        conv_type='Conv2d',
        kernel_size=16,
        stride=16,
        padding='corner',
        dilation=1,
        bias=True,
        norm_cfg=None,
        input_size=None,
        init_cfg=None,
    ):
        super(PatchEmbed, self).__init__(init_cfg=init_cfg)

        self.embed_dims = embed_dims
        if stride is None:
            stride = kernel_size

        kernel_size = to_2tuple(kernel_size)
        stride = to_2tuple(stride)
        dilation = to_2tuple(dilation)

        if isinstance(padding, str):
            self.adap_padding = AdaptivePadding(kernel_size=kernel_size,
                                                stride=stride,
                                                dilation=dilation,
                                                padding=padding)
            # disable the padding of conv
            padding = 0
        else:
            self.adap_padding = None
        padding = to_2tuple(padding)

        self.projection = build_conv_layer(dict(type=conv_type),
                                           in_channels=in_channels,
                                           out_channels=embed_dims,
                                           kernel_size=kernel_size,
                                           stride=stride,
                                           padding=padding,
                                           dilation=dilation,
                                           bias=bias)

        if norm_cfg is not None:
            self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
        else:
            self.norm = None

        if input_size:
            input_size = to_2tuple(input_size)
            # `init_out_size` would be used outside to
            # calculate the num_patches
            # when `use_abs_pos_embed` outside
            self.init_input_size = input_size
            if self.adap_padding:
                pad_h, pad_w = self.adap_padding.get_pad_shape(input_size)
                input_h, input_w = input_size
                input_h = input_h + pad_h
                input_w = input_w + pad_w
                input_size = (input_h, input_w)

            # https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
            h_out = (input_size[0] + 2 * padding[0] - dilation[0] *
                     (kernel_size[0] - 1) - 1) // stride[0] + 1
            w_out = (input_size[1] + 2 * padding[1] - dilation[1] *
                     (kernel_size[1] - 1) - 1) // stride[1] + 1
            self.init_out_size = (h_out, w_out)
        else:
            self.init_input_size = None
            self.init_out_size = None
Beispiel #10
0
    def __init__(self,
                 inplanes,
                 planes,
                 eta=8,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 dcn=None,
                 plugins=None, **kwargs):
        """Bottleneck block for ResNet.

        If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
        it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottleneck, self).__init__()
        assert style in ['pytorch', 'caffe']
        assert dcn is None or isinstance(dcn, dict)

        self.inplanes = inplanes
        self.planes = planes
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.dcn = dcn
        self.with_dcn = dcn is not None

        # mask
        self.mask_s  = Mask_s( inplanes, eta, **kwargs)  
        self.mask_c1 = Mask_c( inplanes, planes, **kwargs)
        self.mask_c2 = Mask_c( planes, planes, **kwargs)

        if self.style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            norm_cfg, planes * self.expansion, postfix=3)

        self.conv1 = build_conv_layer(
            conv_cfg,
            inplanes,
            planes,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        fallback_on_stride = False
        if self.with_dcn:
            fallback_on_stride = dcn.pop('fallback_on_stride', False)
        if not self.with_dcn or fallback_on_stride:
            self.conv2 = build_conv_layer(
                conv_cfg,
                planes,
                planes,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation,
                bias=False)
        else:
            assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
            self.conv2 = build_conv_layer(
                dcn,
                planes,
                planes,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation,
                bias=False)

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(
            conv_cfg,
            planes,
            planes * self.expansion,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

        # mask flops
        flops_mask_c1 = self.mask_c1.get_flops()
        flops_mask_c2 = self.mask_c2.get_flops()
        self.flops_mask = torch.Tensor([flops_mask_c1 + flops_mask_c2])
    def __init__(self,
                 block,
                 inplanes,
                 planes,
                 num_blocks,
                 stride=1,
                 dilation=1,
                 avg_down=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 multi_grid=None,
                 contract_dilation=False,
                 **kwargs):
        self.block = block

        downsample = None
        if stride != 1 or inplanes != planes * block.expansion:
            downsample = []
            conv_stride = stride
            if avg_down:
                conv_stride = 1
                downsample.append(
                    nn.AvgPool2d(kernel_size=stride,
                                 stride=stride,
                                 ceil_mode=True,
                                 count_include_pad=False))
            downsample.extend([
                build_conv_layer(conv_cfg,
                                 inplanes,
                                 planes * block.expansion,
                                 kernel_size=1,
                                 stride=conv_stride,
                                 bias=False),
                build_norm_layer(norm_cfg, planes * block.expansion)[1]
            ])
            downsample = nn.Sequential(*downsample)

        layers = []
        if multi_grid is None:
            if dilation > 1 and contract_dilation:
                first_dilation = dilation // 2
            else:
                first_dilation = dilation
        else:
            first_dilation = multi_grid[0]
        layers.append(
            block(inplanes=inplanes,
                  planes=planes,
                  stride=stride,
                  dilation=first_dilation,
                  downsample=downsample,
                  conv_cfg=conv_cfg,
                  norm_cfg=norm_cfg,
                  **kwargs))
        inplanes = planes * block.expansion
        for i in range(1, num_blocks):
            layers.append(
                block(
                    inplanes=inplanes,
                    planes=planes,
                    stride=1,
                    dilation=dilation if multi_grid is None else multi_grid[i],
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    **kwargs))
        super(ResLayer, self).__init__(*layers)
Beispiel #12
0
    def __init__(self,
                 extra,
                 in_channels=3,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 norm_eval=False,
                 with_cp=False,
                 frozen_stages=-1,
                 zero_init_residual=False,
                 pretrained=None,
                 init_cfg=None):
        super(HRNet, self).__init__(init_cfg)

        self.pretrained = pretrained
        self.zero_init_residual = zero_init_residual
        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be setting at the same time'
        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is a deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is None:
            if init_cfg is None:
                self.init_cfg = [
                    dict(type='Kaiming', layer='Conv2d'),
                    dict(type='Constant',
                         val=1,
                         layer=['_BatchNorm', 'GroupNorm'])
                ]
        else:
            raise TypeError('pretrained must be a str or None')

        self.extra = extra
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.norm_eval = norm_eval
        self.with_cp = with_cp
        self.frozen_stages = frozen_stages

        # stem net
        self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2)

        self.conv1 = build_conv_layer(self.conv_cfg,
                                      in_channels,
                                      64,
                                      kernel_size=3,
                                      stride=2,
                                      padding=1,
                                      bias=False)

        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(self.conv_cfg,
                                      64,
                                      64,
                                      kernel_size=3,
                                      stride=2,
                                      padding=1,
                                      bias=False)

        self.add_module(self.norm2_name, norm2)
        self.relu = nn.ReLU(inplace=True)

        # stage 1
        self.stage1_cfg = self.extra['stage1']
        num_channels = self.stage1_cfg['num_channels'][0]
        block_type = self.stage1_cfg['block']
        num_blocks = self.stage1_cfg['num_blocks'][0]

        block = self.blocks_dict[block_type]
        stage1_out_channels = num_channels * block.expansion
        self.layer1 = self._make_layer(block, 64, num_channels, num_blocks)

        # stage 2
        self.stage2_cfg = self.extra['stage2']
        num_channels = self.stage2_cfg['num_channels']
        block_type = self.stage2_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [channel * block.expansion for channel in num_channels]
        self.transition1 = self._make_transition_layer([stage1_out_channels],
                                                       num_channels)
        self.stage2, pre_stage_channels = self._make_stage(
            self.stage2_cfg, num_channels)

        # stage 3
        self.stage3_cfg = self.extra['stage3']
        num_channels = self.stage3_cfg['num_channels']
        block_type = self.stage3_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [channel * block.expansion for channel in num_channels]
        self.transition2 = self._make_transition_layer(pre_stage_channels,
                                                       num_channels)
        self.stage3, pre_stage_channels = self._make_stage(
            self.stage3_cfg, num_channels)

        # stage 4
        self.stage4_cfg = self.extra['stage4']
        num_channels = self.stage4_cfg['num_channels']
        block_type = self.stage4_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [channel * block.expansion for channel in num_channels]
        self.transition3 = self._make_transition_layer(pre_stage_channels,
                                                       num_channels)
        self.stage4, pre_stage_channels = self._make_stage(
            self.stage4_cfg, num_channels)

        self._freeze_stages()
Beispiel #13
0
    def __init__(self,
                 in_channels=512,
                 out_channels=17,
                 num_stages=1,
                 num_deconv_layers=3,
                 num_deconv_filters=(256, 256, 256),
                 num_deconv_kernels=(4, 4, 4),
                 extra=None,
                 loss_keypoint=None,
                 train_cfg=None,
                 test_cfg=None):
        super().__init__()

        self.in_channels = in_channels
        self.num_stages = num_stages
        self.loss = build_loss(loss_keypoint)

        self.train_cfg = {} if train_cfg is None else train_cfg
        self.test_cfg = {} if test_cfg is None else test_cfg
        self.target_type = self.test_cfg.get('target_type', 'GaussianHeatMap')

        if extra is not None and not isinstance(extra, dict):
            raise TypeError('extra should be dict or None.')

        # build multi-stage deconv layers
        self.multi_deconv_layers = nn.ModuleList([])
        for _ in range(self.num_stages):
            if num_deconv_layers > 0:
                deconv_layers = self._make_deconv_layer(
                    num_deconv_layers,
                    num_deconv_filters,
                    num_deconv_kernels,
                )
            elif num_deconv_layers == 0:
                deconv_layers = nn.Identity()
            else:
                raise ValueError(
                    f'num_deconv_layers ({num_deconv_layers}) should >= 0.')
            self.multi_deconv_layers.append(deconv_layers)

        identity_final_layer = False
        if extra is not None and 'final_conv_kernel' in extra:
            assert extra['final_conv_kernel'] in [0, 1, 3]
            if extra['final_conv_kernel'] == 3:
                padding = 1
            elif extra['final_conv_kernel'] == 1:
                padding = 0
            else:
                # 0 for Identity mapping.
                identity_final_layer = True
            kernel_size = extra['final_conv_kernel']
        else:
            kernel_size = 1
            padding = 0

        # build multi-stage final layers
        self.multi_final_layers = nn.ModuleList([])
        for i in range(self.num_stages):
            if identity_final_layer:
                final_layer = nn.Identity()
            else:
                final_layer = build_conv_layer(
                    cfg=dict(type='Conv2d'),
                    in_channels=num_deconv_filters[-1]
                    if num_deconv_layers > 0 else in_channels,
                    out_channels=out_channels,
                    kernel_size=kernel_size,
                    stride=1,
                    padding=padding)
            self.multi_final_layers.append(final_layer)
Beispiel #14
0
    def __init__(self,
                 num_convs=4,
                 roi_feat_size=14,
                 in_channels=256,
                 conv_kernel_size=3,
                 conv_out_channels=256,
                 num_classes=80,
                 class_agnostic=False,
                 upsample_cfg=dict(type='deconv', scale_factor=2),
                 conv_cfg=None,
                 norm_cfg=None,
                 predictor_cfg=dict(type='Conv'),
                 loss_mask=dict(
                     type='CrossEntropyLoss', use_mask=True, loss_weight=1.0),
                 init_cfg=None):
        assert init_cfg is None, 'To prevent abnormal initialization ' \
                                 'behavior, init_cfg is not allowed to be set'
        super(FCNMaskHead, self).__init__(init_cfg)
        self.upsample_cfg = upsample_cfg.copy()
        if self.upsample_cfg['type'] not in [
                None, 'deconv', 'nearest', 'bilinear', 'carafe'
        ]:
            raise ValueError(
                f'Invalid upsample method {self.upsample_cfg["type"]}, '
                'accepted methods are "deconv", "nearest", "bilinear", '
                '"carafe"')
        self.num_convs = num_convs
        # WARN: roi_feat_size is reserved and not used
        self.roi_feat_size = _pair(roi_feat_size)
        self.in_channels = in_channels
        self.conv_kernel_size = conv_kernel_size
        self.conv_out_channels = conv_out_channels
        self.upsample_method = self.upsample_cfg.get('type')
        self.scale_factor = self.upsample_cfg.pop('scale_factor', None)
        self.num_classes = num_classes
        self.class_agnostic = class_agnostic
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.predictor_cfg = predictor_cfg
        self.fp16_enabled = False
        self.loss_mask = build_loss(loss_mask)

        self.convs = ModuleList()
        for i in range(self.num_convs):
            in_channels = (
                self.in_channels if i == 0 else self.conv_out_channels)
            padding = (self.conv_kernel_size - 1) // 2
            self.convs.append(
                ConvModule(
                    in_channels,
                    self.conv_out_channels,
                    self.conv_kernel_size,
                    padding=padding,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg))
        upsample_in_channels = (
            self.conv_out_channels if self.num_convs > 0 else in_channels)
        upsample_cfg_ = self.upsample_cfg.copy()
        if self.upsample_method is None:
            self.upsample = None
        elif self.upsample_method == 'deconv':
            upsample_cfg_.update(
                in_channels=upsample_in_channels,
                out_channels=self.conv_out_channels,
                kernel_size=self.scale_factor,
                stride=self.scale_factor)
            self.upsample = build_upsample_layer(upsample_cfg_)
        elif self.upsample_method == 'carafe':
            upsample_cfg_.update(
                channels=upsample_in_channels, scale_factor=self.scale_factor)
            self.upsample = build_upsample_layer(upsample_cfg_)
        else:
            # suppress warnings
            align_corners = (None
                             if self.upsample_method == 'nearest' else False)
            upsample_cfg_.update(
                scale_factor=self.scale_factor,
                mode=self.upsample_method,
                align_corners=align_corners)
            self.upsample = build_upsample_layer(upsample_cfg_)

        out_channels = 1 if self.class_agnostic else self.num_classes
        logits_in_channel = (
            self.conv_out_channels
            if self.upsample_method == 'deconv' else upsample_in_channels)
        self.conv_logits = build_conv_layer(self.predictor_cfg,
                                            logits_in_channel, out_channels, 1)
        self.relu = nn.ReLU(inplace=True)
        self.debug_imgs = None
Beispiel #15
0
    def __init__(self,
                 extra,
                 in_channels=3,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 norm_eval=False,
                 with_cp=False,
                 zero_init_residual=False):
        super(HRNet, self).__init__()
        self.extra = extra
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.norm_eval = norm_eval
        self.with_cp = with_cp
        self.zero_init_residual = zero_init_residual

        # stem net
        self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2)

        self.conv1 = build_conv_layer(self.conv_cfg,
                                      in_channels,
                                      64,
                                      kernel_size=3,
                                      stride=2,
                                      padding=1,
                                      bias=False)

        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(self.conv_cfg,
                                      64,
                                      64,
                                      kernel_size=3,
                                      stride=2,
                                      padding=1,
                                      bias=False)

        self.add_module(self.norm2_name, norm2)
        self.relu = nn.ReLU(inplace=True)

        # stage 1
        self.stage1_cfg = self.extra['stage1']
        num_channels = self.stage1_cfg['num_channels'][0]
        block_type = self.stage1_cfg['block']
        num_blocks = self.stage1_cfg['num_blocks'][0]

        block = self.blocks_dict[block_type]
        stage1_out_channels = num_channels * get_expansion(block)
        self.layer1 = self._make_layer(block, 64, stage1_out_channels,
                                       num_blocks)

        # stage 2
        self.stage2_cfg = self.extra['stage2']
        num_channels = self.stage2_cfg['num_channels']
        block_type = self.stage2_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [
            channel * get_expansion(block) for channel in num_channels
        ]
        self.transition1 = self._make_transition_layer([stage1_out_channels],
                                                       num_channels)
        self.stage2, pre_stage_channels = self._make_stage(
            self.stage2_cfg, num_channels)

        # stage 3
        self.stage3_cfg = self.extra['stage3']
        num_channels = self.stage3_cfg['num_channels']
        block_type = self.stage3_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [
            channel * get_expansion(block) for channel in num_channels
        ]
        self.transition2 = self._make_transition_layer(pre_stage_channels,
                                                       num_channels)
        self.stage3, pre_stage_channels = self._make_stage(
            self.stage3_cfg, num_channels)

        # stage 4
        self.stage4_cfg = self.extra['stage4']
        num_channels = self.stage4_cfg['num_channels']
        block_type = self.stage4_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [
            channel * get_expansion(block) for channel in num_channels
        ]
        self.transition3 = self._make_transition_layer(pre_stage_channels,
                                                       num_channels)
        self.stage4, pre_stage_channels = self._make_stage(
            self.stage4_cfg, num_channels, multiscale_output=False)
Beispiel #16
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg1=dict(type='BN'),
                 norm_cfg2=dict(type='BN'),
                 norm_cfg3=dict(type='BN'),
                 dcn=None,
                 plugins=None):
        super(BasicBlock, self).__init__()
        assert dcn is None, 'Not implemented yet.'
        assert plugins is None or isinstance(plugins, list)
        if plugins is not None:
            allowed_position = ['after_conv1', 'after_bn1', 'after_conv2']
            assert all(p['position'] in allowed_position for p in plugins)

        self.norm1_name, norm1 = build_norm_layer(norm_cfg1, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(norm_cfg2, planes, postfix=2)

        self.conv1 = build_conv_layer(conv_cfg,
                                      inplanes,
                                      planes,
                                      3,
                                      stride=stride,
                                      padding=dilation,
                                      dilation=dilation,
                                      bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(conv_cfg,
                                      planes,
                                      planes,
                                      3,
                                      padding=1,
                                      bias=False)
        self.add_module(self.norm2_name, norm2)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
        self.with_cp = with_cp
        self.plugins = plugins
        self.with_plugins = plugins is not None

        if self.with_plugins:
            # collect plugins for conv1/conv2/conv3
            self.after_conv1_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv1'
            ]
            self.after_bn1_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_bn1'
            ]
            self.after_conv2_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv2'
            ]

        if self.with_plugins:
            self.after_conv1_plugin_names = self.make_block_plugins(
                planes, self.after_conv1_plugins)
            self.after_bn1_plugin_names = self.make_block_plugins(
                planes, self.after_bn1_plugins)
            self.after_conv2_plugin_names = self.make_block_plugins(
                planes, self.after_conv2_plugins)
    def __init__(self,
                 in_channels=4,
                 feat_channels=[],
                 with_distance=False,
                 with_cluster_center=False,
                 with_voxel_center=False,
                 voxel_size=(0.2, 0.2, 4),
                 point_cloud_range=(0, -40, -3, 70.4, 40, 1),
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 mode='max',
                 fusion_layer=None,
                 return_point_feats=False,
                 model_mode='voxel',
                 compress_dim=None):
        super(Cylinder_VFE, self).__init__()
        assert mode in ['avg', 'max']
        assert len(feat_channels) > 0
        if with_cluster_center:
            in_channels += 3
        if with_voxel_center:
            in_channels += 3
        if with_distance:
            in_channels += 3
        self.in_channels = in_channels
        self._with_distance = with_distance
        self._with_cluster_center = with_cluster_center
        self._with_voxel_center = with_voxel_center
        self.return_point_feats = return_point_feats
        self.fp16_enabled = False

        # Need pillar (voxel) size and x/y offset in order to calculate offset
        self.vx = voxel_size[0]
        self.vy = voxel_size[1]
        self.vz = voxel_size[2]
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.z_offset = self.vz / 2 + point_cloud_range[2]
        self.point_cloud_range = point_cloud_range
        '''
        feat_channels = [self.in_channels] + list(feat_channels)
        vfe_layers = []
        for i in range(len(feat_channels) - 1):
            in_filters = feat_channels[i]
            out_filters = feat_channels[i + 1]
            if i > 0:
                in_filters *= 2
            norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters)
            vfe_layers.append(
                nn.Sequential(
                    nn.Linear(in_filters, out_filters, bias=False), norm_layer,
                    nn.ReLU(inplace=True)))
            self.vfe_layers = nn.ModuleList(vfe_layers)
        '''

        build_conv_layer(conv_cfg, in_channels, 64, 1)

        if model_mode == 'voxel':
            self.feat_model = nn.Sequential(
                build_norm_layer(norm_cfg, in_channels)[1],
                build_conv_layer(conv_cfg, in_channels, 64, 1, bias=False),
                build_norm_layer(norm_cfg, 64)[1], nn.ReLU(),
                build_conv_layer(conv_cfg, 64, 128, 1, bias=False),
                build_norm_layer(norm_cfg, 128)[1], nn.ReLU(),
                build_conv_layer(conv_cfg, 128, 256, 1, bias=False),
                build_norm_layer(norm_cfg, 256)[1], nn.ReLU(),
                build_conv_layer(conv_cfg, 256, 256, 1))
        else:
            self.feat_model = nn.Sequential(
                build_conv_layer(conv_cfg, in_channels, 64, 1, bias=False),
                build_norm_layer(norm_cfg, 64)[1],
                nn.ReLU(),
            )

        self.compress_dim = compress_dim
        if compress_dim is not None:
            self.feat_compression = nn.Sequential(nn.Linear(256, compress_dim),
                                                  nn.ReLU())
Beispiel #18
0
    def __init__(self,
                 block,
                 num_blocks,
                 in_channels,
                 out_channels,
                 expansion=None,
                 stride=1,
                 avg_down=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 **kwargs):
        self.block = block
        self.expansion = get_expansion(block, expansion)

        downsample = None
        if stride != 1 or in_channels != out_channels:
            downsample = []
            conv_stride = stride
            if avg_down and stride != 1:
                conv_stride = 1
                downsample.append(
                    nn.AvgPool2d(
                        kernel_size=stride,
                        stride=stride,
                        ceil_mode=True,
                        count_include_pad=False))
            downsample.extend([
                build_conv_layer(
                    conv_cfg,
                    in_channels,
                    out_channels,
                    kernel_size=1,
                    stride=conv_stride,
                    bias=False),
                build_norm_layer(norm_cfg, out_channels)[1]
            ])
            downsample = nn.Sequential(*downsample)

        layers = []
        layers.append(
            block(
                in_channels=in_channels,
                out_channels=out_channels,
                expansion=self.expansion,
                stride=stride,
                downsample=downsample,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                **kwargs))
        in_channels = out_channels
        for i in range(1, num_blocks):
            layers.append(
                block(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    expansion=self.expansion,
                    stride=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    **kwargs))
        super(ResLayer, self).__init__(*layers)
Beispiel #19
0
def make_sparse_convmodule(in_channels,
                           out_channels,
                           kernel_size,
                           indice_key,
                           stride=1,
                           padding=0,
                           conv_type='SubMConv3d',
                           norm_cfg=None,
                           order=('conv', 'norm', 'act')):
    """Make sparse convolution module.

    Args:
        in_channels (int): the number of input channels
        out_channels (int): the number of out channels
        kernel_size (int|tuple(int)): kernel size of convolution
        indice_key (str): the indice key used for sparse tensor
        stride (int|tuple(int)): the stride of convolution
        padding (int or list[int]): the padding number of input
        conv_type (str): sparse conv type in spconv
        norm_cfg (dict[str]): config of normalization layer
        order (tuple[str]): The order of conv/norm/activation layers. It is a
            sequence of "conv", "norm" and "act". Common examples are
            ("conv", "norm", "act") and ("act", "conv", "norm").

    Returns:
        spconv.SparseSequential: sparse convolution module.
    """
    assert isinstance(order, tuple) and len(order) <= 3
    assert set(order) | {'conv', 'norm', 'act'} == {'conv', 'norm', 'act'}

    conv_cfg = dict(type=conv_type, indice_key=indice_key)

    layers = list()
    for layer in order:
        if layer == 'conv':
            if conv_type not in [
                    'SparseInverseConv3d', 'SparseInverseConv2d',
                    'SparseInverseConv1d'
            ]:
                layers.append(
                    build_conv_layer(conv_cfg,
                                     in_channels,
                                     out_channels,
                                     kernel_size,
                                     stride=stride,
                                     padding=padding,
                                     bias=False))
            else:
                layers.append(
                    build_conv_layer(conv_cfg,
                                     in_channels,
                                     out_channels,
                                     kernel_size,
                                     bias=False))
        elif layer == 'norm':
            layers.append(build_norm_layer(norm_cfg, out_channels)[1])
        elif layer == 'act':
            layers.append(nn.ReLU(inplace=True))

    layers = spconv.SparseSequential(*layers)
    return layers
Beispiel #20
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 groups=1,
                 width_per_group=4,
                 base_channels=64,
                 radix=2,
                 reduction_factor=4,
                 avg_down_stride=True,
                 **kwargs):
        super().__init__(in_channels, out_channels, **kwargs)

        self.groups = groups
        self.width_per_group = width_per_group

        # For ResNet bottleneck, middle channels are determined by expansion
        # and out_channels, but for ResNeXt bottleneck, it is determined by
        # groups and width_per_group and the stage it is located in.
        if groups != 1:
            assert self.mid_channels % base_channels == 0
            self.mid_channels = (
                groups * width_per_group * self.mid_channels // base_channels)

        self.avg_down_stride = avg_down_stride and self.conv2_stride > 1

        self.norm1_name, norm1 = build_norm_layer(
            self.norm_cfg, self.mid_channels, postfix=1)
        self.norm3_name, norm3 = build_norm_layer(
            self.norm_cfg, self.out_channels, postfix=3)

        self.conv1 = build_conv_layer(
            self.conv_cfg,
            self.in_channels,
            self.mid_channels,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = SplitAttentionConv2d(
            self.mid_channels,
            self.mid_channels,
            kernel_size=3,
            stride=1 if self.avg_down_stride else self.conv2_stride,
            padding=self.dilation,
            dilation=self.dilation,
            groups=groups,
            radix=radix,
            reduction_factor=reduction_factor,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg)
        delattr(self, self.norm2_name)

        if self.avg_down_stride:
            self.avd_layer = nn.AvgPool2d(3, self.conv2_stride, padding=1)

        self.conv3 = build_conv_layer(
            self.conv_cfg,
            self.mid_channels,
            self.out_channels,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)
Beispiel #21
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 expansion=4,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN')):
        super(Bottleneck, self).__init__()
        assert style in ['pytorch', 'caffe']

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.expansion = expansion
        assert out_channels % expansion == 0
        self.mid_channels = out_channels // expansion
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg

        if self.style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(norm_cfg,
                                                  self.mid_channels,
                                                  postfix=1)
        self.norm2_name, norm2 = build_norm_layer(norm_cfg,
                                                  self.mid_channels,
                                                  postfix=2)
        self.norm3_name, norm3 = build_norm_layer(norm_cfg,
                                                  out_channels,
                                                  postfix=3)

        self.conv1 = build_conv_layer(conv_cfg,
                                      in_channels,
                                      self.mid_channels,
                                      kernel_size=1,
                                      stride=self.conv1_stride,
                                      bias=False)
        self.add_module(self.norm1_name, norm1)
        # self.conv2 = build_conv_layer(
        #     conv_cfg,
        #     self.mid_channels,
        #     self.mid_channels,
        #     kernel_size=3,
        #     stride=self.conv2_stride,
        #     padding=dilation,
        #     dilation=dilation,
        #     bias=False)
        if self.conv2_stride > 1:
            self.conv2 = nn.Sequential(
                CARAFE_Downsample(self.mid_channels, scale_factor=2),
                build_conv_layer(conv_cfg,
                                 self.mid_channels,
                                 self.mid_channels,
                                 kernel_size=3,
                                 stride=1,
                                 padding=1,
                                 dilation=1,
                                 bias=False))
        else:
            self.conv2 = nn.Sequential(
                build_conv_layer(conv_cfg,
                                 self.mid_channels,
                                 self.mid_channels,
                                 kernel_size=3,
                                 stride=self.conv2_stride,
                                 padding=dilation,
                                 dilation=dilation,
                                 bias=False))

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(conv_cfg,
                                      self.mid_channels,
                                      out_channels,
                                      kernel_size=1,
                                      bias=False)
        self.add_module(self.norm3_name, norm3)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
Beispiel #22
0
    def __init__(self,
                 inplanes,
                 planes,
                 groups=1,
                 base_width=4,
                 base_channels=64,
                 **kwargs):
        """Bottleneck block for ResNeXt.

        If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
        it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottleneck, self).__init__(inplanes, planes, **kwargs)

        if groups == 1:
            width = self.planes
        else:
            width = math.floor(self.planes *
                               (base_width / base_channels)) * groups

        self.norm1_name, norm1 = build_norm_layer(
            self.norm_cfg, width, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(
            self.norm_cfg, width, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            self.norm_cfg, self.planes * self.expansion, postfix=3)

        self.conv1 = build_conv_layer(
            self.conv_cfg,
            self.inplanes,
            width,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        fallback_on_stride = False
        self.with_modulated_dcn = False
        if self.with_dcn:
            fallback_on_stride = self.dcn.pop('fallback_on_stride', False)
        if not self.with_dcn or fallback_on_stride:
            self.conv2 = build_conv_layer(
                self.conv_cfg,
                width,
                width,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=self.dilation,
                dilation=self.dilation,
                groups=groups,
                bias=False)
        else:
            assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
            self.conv2 = build_conv_layer(
                self.dcn,
                width,
                width,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=self.dilation,
                dilation=self.dilation,
                groups=groups,
                bias=False)

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(
            self.conv_cfg,
            width,
            self.planes * self.expansion,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)
Beispiel #23
0
    def __init__(self,
                 extra,
                 in_channels=3,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 norm_eval=True,
                 with_cp=False,
                 zero_init_residual=False):
        super(HRNet_upsamp, self).__init__()
        self.extra = extra
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.norm_eval = norm_eval
        self.with_cp = with_cp
        self.zero_init_residual = zero_init_residual

        # stem net
        self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2)

        self.conv1 = build_conv_layer(self.conv_cfg,
                                      in_channels,
                                      64,
                                      kernel_size=3,
                                      stride=2,
                                      padding=1,
                                      bias=False)

        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(self.conv_cfg,
                                      64,
                                      64,
                                      kernel_size=3,
                                      stride=2,
                                      padding=1,
                                      bias=False)

        self.add_module(self.norm2_name, norm2)
        self.relu = nn.ReLU(inplace=True)
        # start upsamp diff
        #self.do_upsample = nn.Upsample(scale_factor=2,mode='bilinear')
        # end upsamp diff
        # stage 1
        self.stage1_cfg = self.extra['stage1']
        num_channels = self.stage1_cfg['num_channels'][0]
        block_type = self.stage1_cfg['block']
        num_blocks = self.stage1_cfg['num_blocks'][0]

        block = self.blocks_dict[block_type]
        stage1_out_channels = num_channels * block.expansion
        self.layer1 = self._make_layer(block, 64, num_channels, num_blocks)

        # stage 2
        self.stage2_cfg = self.extra['stage2']
        num_channels = self.stage2_cfg['num_channels']
        block_type = self.stage2_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [channel * block.expansion for channel in num_channels]
        self.transition1 = self._make_transition_layer([stage1_out_channels],
                                                       num_channels)
        self.stage2, pre_stage_channels = self._make_stage(
            self.stage2_cfg, num_channels)

        # stage 3
        self.stage3_cfg = self.extra['stage3']
        num_channels = self.stage3_cfg['num_channels']
        block_type = self.stage3_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [channel * block.expansion for channel in num_channels]
        self.transition2 = self._make_transition_layer(pre_stage_channels,
                                                       num_channels)
        self.stage3, pre_stage_channels = self._make_stage(
            self.stage3_cfg, num_channels)

        # stage 4
        # start upsamp diff
        deconv_cfg = {}
        deconv_cfg["NUM_CHANNELS"] = [32, 64, 128, 256]
        deconv_cfg["NUM_DECONVS"] = 1
        deconv_cfg["KERNEL_SIZE"] = [3, 3, 3, 3]
        deconv_cfg["NUM_BASIC_BLOCKS"] = 1
        self.num_deconvs = len(pre_stage_channels)  #deconv_cfg["NUM_DECONVS"]
        self.deconv_layers = self._make_deconv_layers(deconv_cfg,
                                                      pre_stage_channels)

        #self.upsample = nn.Upsample(scale_factor=2,mode='bilinear')
        # end upsamp diff
        self.stage4_cfg = self.extra['stage4']
        num_channels = self.stage4_cfg['num_channels']
        block_type = self.stage4_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [channel * block.expansion for channel in num_channels]
        self.transition3 = self._make_transition_layer(pre_stage_channels,
                                                       num_channels)
        self.stage4, pre_stage_channels = self._make_stage(
            self.stage4_cfg, num_channels)
        # start upsamp diff
        #deconv_cfg["NUM_BASIC_BLOCKS"] = 1
        self.num_deconvs = len(pre_stage_channels)  #deconv_cfg["NUM_DECONVS"]
        self.deconv_layers_2 = self._make_deconv_layers(
            deconv_cfg, pre_stage_channels)
Beispiel #24
0
    def __init__(self,
                 block,
                 num_blocks,
                 in_channels,
                 out_channels,
                 expansion=None,
                 stride=1,
                 avg_down=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 downsample_first=True,
                 **kwargs):
        # Protect mutable default arguments
        norm_cfg = copy.deepcopy(norm_cfg)
        self.block = block
        self.expansion = get_expansion(block, expansion)

        downsample = None
        if stride != 1 or in_channels != out_channels:
            downsample = []
            conv_stride = stride
            if avg_down and stride != 1:
                conv_stride = 1
                downsample.append(
                    nn.AvgPool2d(
                        kernel_size=stride,
                        stride=stride,
                        ceil_mode=True,
                        count_include_pad=False))
            downsample.extend([
                build_conv_layer(
                    conv_cfg,
                    in_channels,
                    out_channels,
                    kernel_size=1,
                    stride=conv_stride,
                    bias=False),
                build_norm_layer(norm_cfg, out_channels)[1]
            ])
            downsample = nn.Sequential(*downsample)

        layers = []
        if downsample_first:
            layers.append(
                block(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    expansion=self.expansion,
                    stride=stride,
                    downsample=downsample,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    **kwargs))
            in_channels = out_channels
            for _ in range(1, num_blocks):
                layers.append(
                    block(
                        in_channels=in_channels,
                        out_channels=out_channels,
                        expansion=self.expansion,
                        stride=1,
                        conv_cfg=conv_cfg,
                        norm_cfg=norm_cfg,
                        **kwargs))
        else:  # downsample_first=False is for HourglassModule
            for i in range(0, num_blocks - 1):
                layers.append(
                    block(
                        in_channels=in_channels,
                        out_channels=in_channels,
                        expansion=self.expansion,
                        stride=1,
                        conv_cfg=conv_cfg,
                        norm_cfg=norm_cfg,
                        **kwargs))
            layers.append(
                block(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    expansion=self.expansion,
                    stride=stride,
                    downsample=downsample,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    **kwargs))

        super().__init__(*layers)
    def _make_fuse_layers(self):
        """Make fuse layer."""
        if self.num_branches == 1:
            return None

        num_branches = self.num_branches
        in_channels = self.in_channels
        fuse_layers = []
        num_out_branches = num_branches if self.multiscale_output else 1
        for i in range(num_out_branches):
            fuse_layer = []
            for j in range(num_branches):
                if j > i:
                    fuse_layer.append(
                        nn.Sequential(
                            build_conv_layer(self.conv_cfg,
                                             in_channels[j],
                                             in_channels[i],
                                             kernel_size=1,
                                             stride=1,
                                             padding=0,
                                             bias=False),
                            build_norm_layer(self.norm_cfg, in_channels[i])[1],
                            nn.Upsample(scale_factor=2**(j - i),
                                        mode='nearest')))
                elif j == i:
                    fuse_layer.append(None)
                else:
                    conv_downsamples = []
                    for k in range(i - j):
                        if k == i - j - 1:
                            conv_downsamples.append(
                                nn.Sequential(
                                    build_conv_layer(self.conv_cfg,
                                                     in_channels[j],
                                                     in_channels[j],
                                                     kernel_size=3,
                                                     stride=2,
                                                     padding=1,
                                                     groups=in_channels[j],
                                                     bias=False),
                                    build_norm_layer(self.norm_cfg,
                                                     in_channels[j])[1],
                                    build_conv_layer(self.conv_cfg,
                                                     in_channels[j],
                                                     in_channels[i],
                                                     kernel_size=1,
                                                     stride=1,
                                                     padding=0,
                                                     bias=False),
                                    build_norm_layer(self.norm_cfg,
                                                     in_channels[i])[1]))
                        else:
                            conv_downsamples.append(
                                nn.Sequential(
                                    build_conv_layer(self.conv_cfg,
                                                     in_channels[j],
                                                     in_channels[j],
                                                     kernel_size=3,
                                                     stride=2,
                                                     padding=1,
                                                     groups=in_channels[j],
                                                     bias=False),
                                    build_norm_layer(self.norm_cfg,
                                                     in_channels[j])[1],
                                    build_conv_layer(self.conv_cfg,
                                                     in_channels[j],
                                                     in_channels[j],
                                                     kernel_size=1,
                                                     stride=1,
                                                     padding=0,
                                                     bias=False),
                                    build_norm_layer(self.norm_cfg,
                                                     in_channels[j])[1],
                                    nn.ReLU(inplace=True)))
                    fuse_layer.append(nn.Sequential(*conv_downsamples))
            fuse_layers.append(nn.ModuleList(fuse_layer))

        return nn.ModuleList(fuse_layers)
Beispiel #26
0
    def __init__(self,
                 block,
                 inplanes,
                 planes,
                 num_blocks,
                 stride=1,
                 avg_down=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 downsample_first=True,
                 **kwargs):
        self.block = block

        downsample = None
        if stride != 1 or inplanes != planes * block.expansion:
            downsample = []
            conv_stride = stride
            if avg_down and stride != 1:
                conv_stride = 1
                downsample.append(
                    nn.AvgPool2d(kernel_size=stride,
                                 stride=stride,
                                 ceil_mode=True,
                                 count_include_pad=False))
            if inplanes == 64:
                downsample.extend([
                    build_conv_layer(conv_cfg,
                                     512,
                                     planes * block.expansion,
                                     kernel_size=1,
                                     stride=conv_stride,
                                     bias=False),
                    build_norm_layer(norm_cfg, planes * block.expansion)[1]
                ])
            else:
                downsample.extend([
                    build_conv_layer(conv_cfg,
                                     inplanes,
                                     planes * block.expansion,
                                     kernel_size=1,
                                     stride=conv_stride,
                                     bias=False),
                    build_norm_layer(norm_cfg, planes * block.expansion)[1]
                ])
            downsample = nn.Sequential(*downsample)

        layers = []
        if downsample_first:
            if inplanes == 64:
                layers.append(
                    block(inplanes=inplanes,
                          planes=planes,
                          stride=stride,
                          downsample=downsample,
                          conv_cfg=conv_cfg,
                          norm_cfg=norm_cfg,
                          **kwargs))
            else:
                layers.append(
                    block(inplanes=inplanes,
                          planes=planes,
                          stride=stride,
                          downsample=downsample,
                          conv_cfg=conv_cfg,
                          norm_cfg=norm_cfg,
                          **kwargs))
            inplanes = planes * block.expansion
            for _ in range(1, num_blocks):
                layers.append(
                    block(inplanes=inplanes,
                          planes=planes,
                          stride=1,
                          conv_cfg=conv_cfg,
                          norm_cfg=norm_cfg,
                          **kwargs))

        else:  # downsample_first=False is for HourglassModule
            for _ in range(num_blocks - 1):
                layers.append(
                    block(inplanes=inplanes,
                          planes=inplanes,
                          stride=1,
                          conv_cfg=conv_cfg,
                          norm_cfg=norm_cfg,
                          **kwargs))
            layers.append(
                block(inplanes=inplanes,
                      planes=planes,
                      stride=stride,
                      downsample=downsample,
                      conv_cfg=conv_cfg,
                      norm_cfg=norm_cfg,
                      **kwargs))
        super(ResLayerM, self).__init__(*layers)
    def _make_transition_layer(self, num_channels_pre_layer,
                               num_channels_cur_layer):
        """Make transition layer."""
        num_branches_cur = len(num_channels_cur_layer)
        num_branches_pre = len(num_channels_pre_layer)

        transition_layers = []
        for i in range(num_branches_cur):
            if i < num_branches_pre:
                if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
                    transition_layers.append(
                        nn.Sequential(
                            build_conv_layer(self.conv_cfg,
                                             num_channels_pre_layer[i],
                                             num_channels_pre_layer[i],
                                             kernel_size=3,
                                             stride=1,
                                             padding=1,
                                             groups=num_channels_pre_layer[i],
                                             bias=False),
                            build_norm_layer(self.norm_cfg,
                                             num_channels_pre_layer[i])[1],
                            build_conv_layer(self.conv_cfg,
                                             num_channels_pre_layer[i],
                                             num_channels_cur_layer[i],
                                             kernel_size=1,
                                             stride=1,
                                             padding=0,
                                             bias=False),
                            build_norm_layer(self.norm_cfg,
                                             num_channels_cur_layer[i])[1],
                            nn.ReLU()))
                else:
                    transition_layers.append(None)
            else:
                conv_downsamples = []
                for j in range(i + 1 - num_branches_pre):
                    in_channels = num_channels_pre_layer[-1]
                    out_channels = num_channels_cur_layer[i] \
                        if j == i - num_branches_pre else in_channels
                    conv_downsamples.append(
                        nn.Sequential(
                            build_conv_layer(self.conv_cfg,
                                             in_channels,
                                             in_channels,
                                             kernel_size=3,
                                             stride=2,
                                             padding=1,
                                             groups=in_channels,
                                             bias=False),
                            build_norm_layer(self.norm_cfg, in_channels)[1],
                            build_conv_layer(self.conv_cfg,
                                             in_channels,
                                             out_channels,
                                             kernel_size=1,
                                             stride=1,
                                             padding=0,
                                             bias=False),
                            build_norm_layer(self.norm_cfg, out_channels)[1],
                            nn.ReLU()))
                transition_layers.append(nn.Sequential(*conv_downsamples))

        return nn.ModuleList(transition_layers)
Beispiel #28
0
    def __init__(self,
                 inplanes,
                 planes,
                 scales=4,
                 base_width=26,
                 base_channels=64,
                 stage_type='normal',
                 **kwargs):
        """Bottle2neck block for Res2Net.
        If style is "pytorch", the stride-two layer is the 3x3 conv layer,
        if it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottle2neck, self).__init__(inplanes, planes, **kwargs)
        assert scales > 1, 'Res2Net degenerates to ResNet when scales = 1.'
        width = int(math.floor(self.planes * (base_width / base_channels)))

        self.norm1_name, norm1 = build_norm_layer(self.norm_cfg,
                                                  width * scales,
                                                  postfix=1)
        self.norm3_name, norm3 = build_norm_layer(self.norm_cfg,
                                                  self.planes * self.expansion,
                                                  postfix=3)

        self.conv1 = build_conv_layer(self.conv_cfg,
                                      self.inplanes,
                                      width * scales,
                                      kernel_size=1,
                                      stride=self.conv1_stride,
                                      bias=False)
        self.add_module(self.norm1_name, norm1)

        if stage_type == 'stage' and self.conv2_stride != 1:
            self.pool = nn.AvgPool2d(kernel_size=3,
                                     stride=self.conv2_stride,
                                     padding=1)
        convs = []
        bns = []

        fallback_on_stride = False
        if self.with_dcn:
            fallback_on_stride = self.dcn.pop('fallback_on_stride', False)
        if not self.with_dcn or fallback_on_stride:
            for i in range(scales - 1):
                convs.append(
                    build_conv_layer(self.conv_cfg,
                                     width,
                                     width,
                                     kernel_size=3,
                                     stride=self.conv2_stride,
                                     padding=self.dilation,
                                     dilation=self.dilation,
                                     bias=False))
                bns.append(
                    build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1])
            self.convs = nn.ModuleList(convs)
            self.bns = nn.ModuleList(bns)
        else:
            assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
            for i in range(scales - 1):
                convs.append(
                    build_conv_layer(self.dcn,
                                     width,
                                     width,
                                     kernel_size=3,
                                     stride=self.conv2_stride,
                                     padding=self.dilation,
                                     dilation=self.dilation,
                                     bias=False))
                bns.append(
                    build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1])
            self.convs = nn.ModuleList(convs)
            self.bns = nn.ModuleList(bns)

        self.conv3 = build_conv_layer(self.conv_cfg,
                                      width * scales,
                                      self.planes * self.expansion,
                                      kernel_size=1,
                                      bias=False)
        self.add_module(self.norm3_name, norm3)

        self.stage_type = stage_type
        self.scales = scales
        self.width = width
        delattr(self, 'conv2')
        delattr(self, self.norm2_name)
Beispiel #29
0
def make_res_layer(block,
                   inplanes,
                   planes,
                   blocks,
                   stride=1,
                   dilation=1,
                   style='pytorch',
                   with_cp=False,
                   conv_cfg=None,
                   norm_cfg=dict(type='BN'),
                   dcn=None,
                   gcb=None,
                   gen_attention=None,
                   gen_attention_blocks=[]):
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        downsample = nn.Sequential(
            build_conv_layer(
                conv_cfg,
                inplanes,
                planes * block.expansion,
                kernel_size=1,
                stride=stride,
                bias=False),
            build_norm_layer(norm_cfg, planes * block.expansion)[1],
        )

    layers = []
    if dilation in (1, 2):
        layers.append(
            block(
                inplanes=inplanes,
                planes=planes,
                stride=stride,
                dilation=1,
                downsample=downsample,
                style=style,
                with_cp=with_cp,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                dcn=dcn,
                gcb=gcb,
                gen_attention=gen_attention if
                (0 in gen_attention_blocks) else None))
    elif dilation == 4:
        layers.append(
            block(
                inplanes=inplanes,
                planes=planes,
                stride=stride,
                dilation=2,
                downsample=downsample,
                style=style,
                with_cp=with_cp,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                dcn=dcn,
                gcb=gcb,
                gen_attention=gen_attention if
                (0 in gen_attention_blocks) else None))
    else:
        raise RuntimeError('=> unknown dilation size: {}'.format(dilation))
    inplanes = planes * block.expansion
    for i in range(1, blocks):
        layers.append(
            block(
                inplanes=inplanes,
                planes=planes,
                stride=1,
                dilation=dilation,
                style=style,
                with_cp=with_cp,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                dcn=dcn,
                gcb=gcb,
                gen_attention=gen_attention if
                (i in gen_attention_blocks) else None))

    return nn.Sequential(*layers)