Beispiel #1
0
def main():
    args = parse_args()

    assert args.out or args.show or args.json_out, \
        ('Please specify at least one operation (save or show the results) '
         'with the argument "--out" or "--show" or "--json_out"')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    if args.json_out is not None and args.json_out.endswith('.json'):
        args.json_out = args.json_out[:-5]

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   imgs_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)

    while not osp.isfile(args.checkpoint):
        print('Waiting for {} to exist...'.format(args.checkpoint))
        time.sleep(60)

    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(model.cuda())
        outputs = multi_gpu_test(model, data_loader, args.tmpdir)
    print(outputs)
    rank, _ = get_dist_info()
    if args.out and rank == 0:
        print('\nwriting results to {}'.format(args.out))
        mmcv.dump(outputs, args.out)
        eval_types = args.eval
        if eval_types:
            print('Starting evaluate {}'.format(' and '.join(eval_types)))
            if eval_types == ['proposal_fast']:
                result_file = args.out
                coco_eval(result_file,
                          eval_types,
                          dataset.coco,
                          classwise=args.classwise)
            else:
                if not isinstance(outputs[0], dict):
                    result_files = results2json_segm(dataset, outputs,
                                                     args.out)
                    coco_eval(result_files,
                              eval_types,
                              dataset.coco,
                              classwise=args.classwise)
                else:
                    for name in outputs[0]:
                        print('\nEvaluating {}'.format(name))
                        outputs_ = [out[name] for out in outputs]
                        result_file = args.out + '.{}'.format(name)
                        result_files = results2json(dataset, outputs_,
                                                    result_file)
                        coco_eval(result_files,
                                  eval_types,
                                  dataset.coco,
                                  classwise=args.classwise)

    # Save predictions in the COCO json format
    if args.json_out and rank == 0:
        if not isinstance(outputs[0], dict):
            results2json(dataset, outputs, args.json_out)
        else:
            for name in outputs[0]:
                outputs_ = [out[name] for out in outputs]
                result_file = args.json_out + '.{}'.format(name)
                results2json(dataset, outputs_, result_file)
Beispiel #2
0
def _non_dist_train(model,
                    dataset,
                    cfg,
                    validate=False,
                    logger=None,
                    timestamp=None):
    if validate:
        raise NotImplementedError('Built-in validation is not implemented '
                                  'yet in not-distributed training. Use '
                                  'distributed training or test.py and '
                                  '*eval.py scripts instead.')
    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
    data_loaders = [
        build_dataloader(
            ds,
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            cfg.gpus,
            dist=False) for ds in dataset
    ]
    # put model on gpus
    model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()

    # # if model.module.bbox_head.freeze_solov2_and_train_combonly:
    # if model.module.bbox_head.optimize_list is not None:
    #     for (key, param) in model.named_parameters():
    #         # if 'kernel_convs_convcomb' not in key and 'context_fusion_convs' not in key and 'learned_weight' not in key:
    #         if not any(s in key for s in model.module.bbox_head.optimize_list):
    #             param.requires_grad=False
    #         else:
    #             # print('optimize {}'.format(key))
    #             logger.info('optimize {}'.format(key))

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(
        model, batch_processor, optimizer, cfg.work_dir, logger=logger)
    # an ugly walkaround to make the .log and .log.json filenames the same
    runner.timestamp = timestamp
    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(
            **cfg.optimizer_config, **fp16_cfg, distributed=False)
    else:
        optimizer_config = cfg.optimizer_config
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)

    ## add test after training
    if cfg.data.test.ann_file != 'data/lvis/lvis_v0.5_val_lvis_freqset.json': # if val set is lvis freq, only eval on lvis-freq val set
        cfg.data.test.test_mode = True
        dataset = build_dataset(cfg.data.test)
        data_loader = build_dataloader(
            dataset,
            imgs_per_gpu=1,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=False,
            shuffle=False)
        model_orig=model.module
        model = MMDataParallel(model, device_ids=[0]).cuda()
        data_loader.dataset.img_infos = data_loader.dataset.img_infos[:100]
        outputs = single_gpu_test(model, data_loader)

        print('\nwriting results to {}'.format('xxx'))
        # mmcv.dump(outputs, 'xxx')
        eval_types = ['segm']
        if eval_types:
            print('Starting evaluate {}'.format(' and '.join(eval_types)))
            if eval_types == ['proposal_fast']:
                result_file = 'xxx'
                coco_eval(result_file, eval_types, dataset.coco)
            else:
                if not isinstance(outputs[0], dict):
                    result_files = results2json_segm(dataset, outputs, 'xxx', dump=False)
                    coco_eval(result_files, eval_types, dataset.coco)
                else:
                    for name in outputs[0]:
                        print('\nEvaluating {}'.format(name))
                        outputs_ = [out[name] for out in outputs]
                        result_file = 'xxx' + '.{}'.format(name)
                        result_files = results2json(dataset, outputs_,
                                                    result_file, dump=False)
                        coco_eval(result_files, eval_types, dataset.coco)

        ##eval on lvis-77######
        cfg.data.test.ann_file = 'data/lvis/lvis_v0.5_val_cocofied.json'
        cfg.data.test.img_prefix = 'data/lvis/val2017/'
        cfg.data.test.test_mode = True
        dataset = build_dataset(cfg.data.test)
        data_loader = build_dataloader(
            dataset,
            imgs_per_gpu=1,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=False,
            shuffle=False)
        # model_orig=model.module
        # model = MMDataParallel(model, device_ids=[0]).cuda()
        data_loader.dataset.img_infos = data_loader.dataset.img_infos[:100]
        outputs = single_gpu_test(model, data_loader)

        print('\nwriting results to {}'.format('xxx'))
        # mmcv.dump(outputs, 'xxx')
        eval_types = ['segm']
        if eval_types:
            print('Starting evaluate {}'.format(' and '.join(eval_types)))
            if eval_types == ['proposal_fast']:
                result_file = 'xxx'
                coco_eval(result_file, eval_types, dataset.coco)
            else:
                if not isinstance(outputs[0], dict):
                    result_files = results2json_segm(dataset, outputs, 'xxx', dump=False)
                    from lvis import LVISEval
                    lvisEval = LVISEval('data/lvis/lvis_v0.5_val_cocofied.json', result_files, 'segm')
                    lvisEval.run()
                    lvisEval.print_results()
                    # fix lvis api eval iou_thr error, should be 0.9 but was 0.8999
                    lvisEval.params.iou_thrs[8] = 0.9
                    for iou in [0.5, 0.6, 0.7, 0.8, 0.9]:
                        print('AP at iou {}: {}'.format(iou, lvisEval._summarize('ap', iou_thr=iou)))
                else:
                    for name in outputs[0]:
                        print('\nEvaluating {}'.format(name))
                        outputs_ = [out[name] for out in outputs]
                        result_file = 'xxx' + '.{}'.format(name)
                        result_files = results2json(dataset, outputs_,
                                                    result_file, dump=False)
                        coco_eval(result_files, eval_types, dataset.coco)
    else:
        ##eval on lvis-freq######
        cfg.data.test.test_mode = True
        dataset = build_dataset(cfg.data.test)
        data_loader = build_dataloader(
            dataset,
            imgs_per_gpu=1,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=False,
            shuffle=False)
        # model_orig=model.module
        # model = MMDataParallel(model, device_ids=[0]).cuda()
        data_loader.dataset.img_infos = data_loader.dataset.img_infos[:100]
        outputs = single_gpu_test(model, data_loader)

        print('\nwriting results to {}'.format('xxx'))
        # mmcv.dump(outputs, 'xxx')
        eval_types = ['segm']
        if eval_types:
            print('Starting evaluate {}'.format(' and '.join(eval_types)))
            if eval_types == ['proposal_fast']:
                result_file = 'xxx'
                coco_eval(result_file, eval_types, dataset.coco)
            else:
                if not isinstance(outputs[0], dict):
                    result_files = results2json_segm(dataset, outputs, 'xxx', dump=False)
                    from lvis import LVISEval
                    lvisEval = LVISEval(cfg.data.test.ann_file, result_files, 'segm')
                    lvisEval.run()
                    lvisEval.print_results()
                    # fix lvis api eval iou_thr error, should be 0.9 but was 0.8999
                    lvisEval.params.iou_thrs[8] = 0.9
                    for iou in [0.5, 0.6, 0.7, 0.8, 0.9]:
                        print('AP at iou {}: {}'.format(iou, lvisEval._summarize('ap', iou_thr=iou)))
                else:
                    for name in outputs[0]:
                        print('\nEvaluating {}'.format(name))
                        outputs_ = [out[name] for out in outputs]
                        result_file = 'xxx' + '.{}'.format(name)
                        result_files = results2json(dataset, outputs_,
                                                    result_file, dump=False)
                        coco_eval(result_files, eval_types, dataset.coco)
Beispiel #3
0
def main():
    args = parse_args()

    assert args.out or args.show or args.json_out, \
        ('Please specify at least one operation (save or show the results) '
         'with the argument "--out" or "--show" or "--json_out"')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    if args.json_out is not None and args.json_out.endswith('.json'):
        args.json_out = args.json_out[:-5]

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   imgs_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)

    while not osp.isfile(args.checkpoint):
        print('Waiting for {} to exist...'.format(args.checkpoint))
        time.sleep(60)

    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    # assert not distributed
    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        # data_loader.dataset.img_infos = data_loader.dataset.img_infos[:10]
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(model.cuda())
        outputs = multi_gpu_test(model, data_loader, args.tmpdir)

    rank, _ = get_dist_info()
    if args.out and rank == 0:
        print('\nwriting results to {}'.format(args.out))
        mmcv.dump(outputs, args.out)
        eval_types = args.eval
        if eval_types:
            print('Starting evaluate {}'.format(' and '.join(eval_types)))
            if eval_types == ['proposal_fast']:
                result_file = args.out
                coco_eval(result_file, eval_types, dataset.coco)
            else:
                if not isinstance(outputs[0], dict):
                    if dataset.ann_file == 'data/coco/annotations/image_info_test-dev2017.json':
                        result_files = results2json_segm(dataset,
                                                         outputs,
                                                         args.out,
                                                         dump=True)
                    else:
                        result_files = results2json_segm(dataset,
                                                         outputs,
                                                         args.out,
                                                         dump=False)
                    if 'lvis' in dataset.ann_file:  ## an ugly fix to make it compatible with coco eval
                        from lvis import LVISEval
                        lvisEval = LVISEval(cfg.data.test.ann_file,
                                            result_files, 'segm')
                        lvisEval.run()
                        lvisEval.print_results()
                        #fix lvis api eval iou_thr error, should be 0.9 but was 0.8999
                        lvisEval.params.iou_thrs[8] = 0.9
                        for iou in [0.5, 0.6, 0.7, 0.8, 0.9]:
                            print('AP at iou {}: {}'.format(
                                iou, lvisEval._summarize('ap', iou_thr=iou)))
                    else:
                        coco_eval(result_files, eval_types, dataset.coco)
                else:
                    for name in outputs[0]:
                        print('\nEvaluating {}'.format(name))
                        outputs_ = [out[name] for out in outputs]
                        result_file = args.out + '.{}'.format(name)
                        result_files = results2json(dataset,
                                                    outputs_,
                                                    result_file,
                                                    dump=False)
                        coco_eval(result_files, eval_types, dataset.coco)

        ##eval on lvis-77######
        cfg.data.test.ann_file = 'data/lvis/lvis_v0.5_val_cocofied.json'
        cfg.data.test.img_prefix = 'data/lvis/val2017/'
        cfg.data.test.test_mode = True
        dataset = build_dataset(cfg.data.test)
        data_loader = build_dataloader(
            dataset,
            imgs_per_gpu=1,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=False,
            shuffle=False)
        # model_orig=model.module
        # model = MMDataParallel(model, device_ids=[0]).cuda()
        # data_loader.dataset.img_infos = data_loader.dataset.img_infos[:10]
        outputs = single_gpu_test(model, data_loader)

        print('\nwriting results to {}'.format('xxx'))
        # mmcv.dump(outputs, 'xxx')
        eval_types = ['segm']
        if eval_types:
            print('Starting evaluate {}'.format(' and '.join(eval_types)))
            if eval_types == ['proposal_fast']:
                result_file = 'xxx'
                coco_eval(result_file, eval_types, dataset.coco)
            else:
                if not isinstance(outputs[0], dict):
                    result_files = results2json_segm(dataset,
                                                     outputs,
                                                     'xxx',
                                                     dump=False)
                    from lvis import LVISEval
                    lvisEval = LVISEval(
                        'data/lvis/lvis_v0.5_val_cocofied.json', result_files,
                        'segm')
                    lvisEval.run()
                    lvisEval.print_results()
                    # fix lvis api eval iou_thr error, should be 0.9 but was 0.8999
                    lvisEval.params.iou_thrs[8] = 0.9
                    for iou in [0.5, 0.6, 0.7, 0.8, 0.9]:
                        print('AP at iou {}: {}'.format(
                            iou, lvisEval._summarize('ap', iou_thr=iou)))
                else:
                    for name in outputs[0]:
                        print('\nEvaluating {}'.format(name))
                        outputs_ = [out[name] for out in outputs]
                        result_file = 'xxx' + '.{}'.format(name)
                        result_files = results2json(dataset,
                                                    outputs_,
                                                    result_file,
                                                    dump=False)
                        coco_eval(result_files, eval_types, dataset.coco)

    # Save predictions in the COCO json format
    if args.json_out and rank == 0:
        if not isinstance(outputs[0], dict):
            results2json(dataset, outputs, args.json_out)
        else:
            for name in outputs[0]:
                outputs_ = [out[name] for out in outputs]
                result_file = args.json_out + '.{}'.format(name)
                results2json(dataset, outputs_, result_file)
Beispiel #4
0
def main():
    args = parse_args()

    assert args.out or args.show or args.json_out or args.vdo_out_folder, \
        ('Please specify at least one operation (save or show the results) '
         'with the argument "--out" or "--show" or "--json_out"')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    if args.json_out is not None and args.json_out.endswith('.json'):
        args.json_out = args.json_out[:-5]

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   imgs_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)

    while not osp.isfile(args.checkpoint):
        print('Waiting for {} to exist...'.format(args.checkpoint))
        time.sleep(60)

    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(model.cuda())
        outputs = multi_gpu_test(model, data_loader, args.tmpdir)

    rank, _ = get_dist_info()
    if args.out and rank == 0:
        print('\nwriting results to {}'.format(args.out))
        mmcv.dump(outputs, args.out)
        eval_types = args.eval
        if eval_types:
            print('Starting evaluate {}'.format(' and '.join(eval_types)))
            if eval_types == ['proposal_fast']:
                result_file = args.out
                coco_eval(result_file, eval_types, dataset.coco)
            else:
                if not isinstance(outputs[0], dict):
                    result_files = results2json_segm(dataset, outputs,
                                                     args.out)
                    coco_eval(result_files, eval_types, dataset.coco)
                else:
                    for name in outputs[0]:
                        print('\nEvaluating {}'.format(name))
                        outputs_ = [out[name] for out in outputs]
                        result_file = args.out + '.{}'.format(name)
                        result_files = results2json(dataset, outputs_,
                                                    result_file)
                        coco_eval(result_files, eval_types, dataset.coco)

    # Save predictions in the COCO json format
    if args.json_out and rank == 0:
        if not isinstance(outputs[0], dict):
            results2json(dataset, outputs, args.json_out)
        else:
            for name in outputs[0]:
                outputs_ = [out[name] for out in outputs]
                result_file = args.json_out + '.{}'.format(name)
                results2json(dataset, outputs_, result_file)

    # Save predictions in RLE format for VDO
    '''
    if args.vdo_out_folder and rank == 0:
        if not osp.exists(args.vdo_out_folder):
            os.mkdir(args.vdo_out_folder)
        for i in range(len(dataset)):
            img_id = dataset.img_infos[i]['id']
            file_name = dataset.img_infos[i]['file_name']
            width = dataset.img_infos[i]['width']
            height = dataset.img_infos[i]['height']
            results = outputs[i]
            lines = ['{} {}\n'.format(width, height).encode()]
            for class_id in range(len(results)):
                for segm in results[class_id]:
                    lines.append('{} '.format(class_id).encode())
                    lines.append(segm[0]['counts'])
                    lines.append('\n'.encode())
            out_file_name = '.'.join(file_name.split('.')[:-1] + ['txt'])
            with open(osp.join(args.vdo_out_folder, out_file_name), 'wb') as f:
                f.writelines(lines)
    '''

    # Save predictions in default format for VDO
    if args.vdo_out_folder and rank == 0:
        if not osp.exists(args.vdo_out_folder):
            os.mkdir(args.vdo_out_folder)
        for i in tqdm(range(len(dataset))):
            file_name = dataset.img_infos[i]['file_name']
            width = dataset.img_infos[i]['width']
            height = dataset.img_infos[i]['height']
            results = outputs[i]
            mask = np.zeros((height, width), dtype=np.uint8)

            obj_id = 1
            for class_id in range(len(results)):
                for segm in results[class_id]:
                    m = mask_util.decode(segm[0])
                    m = m * obj_id
                    mask[m > 0] = m[m > 0]
                    obj_id += 1

            lines = list()
            for y in range(mask.shape[0]):
                line = str()
                for x in range(mask.shape[1]):
                    line = line + str(mask[y][x]) + ' '
                if y != mask.shape[0] - 1:
                    line = line + '\n'
                lines.append(line)

            out_file_name = '.'.join(file_name.split('.')[:-1] + ['txt'])
            with open(osp.join(args.vdo_out_folder, out_file_name), 'w') as f:
                f.writelines(lines)