Beispiel #1
0
def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import DepthInstance3DBoxes
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetDataset(root_path, ann_file)
    boxes_3d = DepthInstance3DBoxes(
        torch.tensor([[
            -2.4053e+00, 9.2295e-01, 8.0661e-02, 2.4054e+00, 2.1468e+00,
            8.5990e-01, 0.0000e+00
        ],
                      [
                          -1.9341e+00, -2.0741e+00, 3.0698e-03, 3.2206e-01,
                          2.5322e-01, 3.5144e-01, 0.0000e+00
                      ],
                      [
                          -3.6908e+00, 8.0684e-03, 2.6201e-01, 4.1515e-01,
                          7.6489e-01, 5.3585e-01, 0.0000e+00
                      ],
                      [
                          2.6332e+00, 8.5143e-01, -4.9964e-03, 3.0367e-01,
                          1.3448e+00, 1.8329e+00, 0.0000e+00
                      ],
                      [
                          2.0221e-02, 2.6153e+00, 1.5109e-02, 7.3335e-01,
                          1.0429e+00, 1.0251e+00, 0.0000e+00
                      ]]))
    scores_3d = torch.tensor(
        [1.2058e-04, 2.3012e-03, 6.2324e-06, 6.6139e-06, 6.7965e-05])
    labels_3d = torch.tensor([0, 0, 0, 0, 0])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
    scannet_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
Beispiel #2
0
def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import DepthInstance3DBoxes
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetDataset(root_path, ann_file)
    boxes_3d = DepthInstance3DBoxes(
        torch.tensor([[
            -2.4053e+00, 9.2295e-01, 8.0661e-02, 2.4054e+00, 2.1468e+00,
            8.5990e-01, 0.0000e+00
        ],
                      [
                          -1.9341e+00, -2.0741e+00, 3.0698e-03, 3.2206e-01,
                          2.5322e-01, 3.5144e-01, 0.0000e+00
                      ],
                      [
                          -3.6908e+00, 8.0684e-03, 2.6201e-01, 4.1515e-01,
                          7.6489e-01, 5.3585e-01, 0.0000e+00
                      ],
                      [
                          2.6332e+00, 8.5143e-01, -4.9964e-03, 3.0367e-01,
                          1.3448e+00, 1.8329e+00, 0.0000e+00
                      ],
                      [
                          2.0221e-02, 2.6153e+00, 1.5109e-02, 7.3335e-01,
                          1.0429e+00, 1.0251e+00, 0.0000e+00
                      ]]))
    scores_3d = torch.tensor(
        [1.2058e-04, 2.3012e-03, 6.2324e-06, 6.6139e-06, 6.7965e-05])
    labels_3d = torch.tensor([0, 0, 0, 0, 0])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
    scannet_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()

    # show function with pipeline
    class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                   'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'garbagebin')
    eval_pipeline = [
        dict(type='LoadPointsFromFile',
             coord_type='DEPTH',
             shift_height=False,
             load_dim=6,
             use_dim=[0, 1, 2]),
        dict(type='DefaultFormatBundle3D',
             class_names=class_names,
             with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    scannet_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()