Beispiel #1
0
from mne.datasets import hf_sef
from matplotlib import pyplot as plt

from groupmne import group_model
from groupmne.inverse import compute_group_inverse

##########################################################
# Download and process MEG data
# -----------------------------
#
# For this example, we use the HF somatosensory dataset [2].
# We need the raw data to estimate the noise covariance
# since only average MEG data (and MRI) are provided in "evoked".
# The data will be downloaded in the same location

_ = hf_sef.data_path("raw")
data_path = hf_sef.data_path("evoked")
meg_path = data_path + "/MEG/"

data_path = op.expanduser(data_path)
subjects_dir = data_path + "/subjects/"
os.environ['SUBJECTS_DIR'] = subjects_dir

raw_name_s = [
    meg_path + s
    for s in ["subject_a/sef_right_raw.fif", "subject_b/hf_sef_15min_raw.fif"]
]


def process_meg(raw_name):
    raw = mne.io.read_raw_fif(raw_name)
Beispiel #2
0
from mne.datasets import hf_sef, sample

# download it if not found
hf_sef.data_path()
sample.data_path()
Beispiel #3
0
==============
HF-SEF dataset
==============

This example looks at high frequency SEF responses.

"""
# Author: Jussi Nurminen ([email protected])
#
# License: BSD (3-clause)

import mne
import os
from mne.datasets import hf_sef

fname_evoked = os.path.join(hf_sef.data_path(),
                            'MEG/subject_b/hf_sef_15min-ave.fif')

print(__doc__)

###############################################################################
# Read evoked data
evoked = mne.Evoked(fname_evoked)

###############################################################################
# Create a highpass filtered version
evoked_hp = evoked.copy()
evoked_hp.filter(l_freq=300, h_freq=None, fir_design='firwin')

###############################################################################
# Compare high-pass filtered and unfiltered data on a single channel
HF-SEF dataset
==============

This example looks at high frequency SEF responses.

"""
# Author: Jussi Nurminen ([email protected])
#
# License: BSD (3-clause)


import mne
import os
from mne.datasets import hf_sef

fname_evoked = os.path.join(hf_sef.data_path(),
                            'MEG/subject_b/hf_sef_15min-ave.fif')

print(__doc__)

###############################################################################
# Read evoked data
evoked = mne.Evoked(fname_evoked)

###############################################################################
# Create a highpass filtered version
evoked_hp = evoked.copy()
evoked_hp.filter(l_freq=300, h_freq=None, fir_design='firwin')

###############################################################################
# Compare high-pass filtered and unfiltered data on a single channel