Beispiel #1
0
def test_egi_dig_montage():
    """Test EGI MFF XML dig montage support."""
    dig_montage = read_dig_montage(egi=egi_dig_montage_fname, unit='m')

    # # test round-trip IO
    temp_dir = _TempDir()
    fname_temp = op.join(temp_dir, 'egi_test.fif')
    _check_roundtrip(dig_montage, fname_temp)

    # Test coordinate transform
    dig_montage.transform_to_head()
    # nasion
    assert_almost_equal(dig_montage.nasion[0], 0)
    assert_almost_equal(dig_montage.nasion[2], 0)
    # lpa and rpa
    assert_allclose(dig_montage.lpa[1:], 0, atol=1e-16)
    assert_allclose(dig_montage.rpa[1:], 0, atol=1e-16)

    # Test accuracy and embedding within raw object
    raw_egi = read_raw_egi(egi_raw_fname, channel_naming='EEG %03d')
    raw_egi.set_montage(dig_montage)
    test_raw_egi = read_raw_fif(egi_fif_fname)

    assert_equal(len(raw_egi.ch_names), len(test_raw_egi.ch_names))
    for ch_raw, ch_test_raw in zip(raw_egi.info['chs'],
                                   test_raw_egi.info['chs']):
        assert_equal(ch_raw['ch_name'], ch_test_raw['ch_name'])
        assert_equal(ch_raw['coord_frame'], FIFF.FIFFV_COORD_HEAD)
        assert_allclose(ch_raw['loc'], ch_test_raw['loc'], atol=1e-7)
    assert_dig_allclose(raw_egi.info, test_raw_egi.info)
Beispiel #2
0
def test_ch_loc():
    """Test raw kit loc."""
    raw_py = read_raw_kit(sqd_path, mrk_path, elp_txt_path, hsp_txt_path,
                          stim='<')
    raw_bin = read_raw_fif(op.join(data_dir, 'test_bin_raw.fif'))

    ch_py = np.array([ch['loc'] for ch in
                      raw_py._raw_extras[0]['channels'][:160]])
    # ch locs stored as m, not mm
    ch_py[:, :3] *= 1e3
    ch_sns = read_sns(op.join(data_dir, 'sns.txt'))
    assert_array_almost_equal(ch_py, ch_sns, 2)

    assert_array_almost_equal(raw_py.info['dev_head_t']['trans'],
                              raw_bin.info['dev_head_t']['trans'], 4)
    for py_ch, bin_ch in zip(raw_py.info['chs'], raw_bin.info['chs']):
        if bin_ch['ch_name'].startswith('MEG'):
            # the stored ch locs have more precision than the sns.txt
            assert_array_almost_equal(py_ch['loc'], bin_ch['loc'], decimal=2)

    # test when more than one marker file provided
    mrks = [mrk_path, mrk2_path, mrk3_path]
    read_raw_kit(sqd_path, mrks, elp_txt_path, hsp_txt_path, preload=False)
    # this dataset does not have the equivalent set of points :(
    raw_bin.info['dig'] = raw_bin.info['dig'][:8]
    raw_py.info['dig'] = raw_py.info['dig'][:8]
    assert_dig_allclose(raw_py.info, raw_bin.info)
Beispiel #3
0
def test_raw():
    """Test bti conversion to Raw object."""
    for pdf, config, hs, exported in zip(pdf_fnames, config_fnames, hs_fnames,
                                         exported_fnames):
        # rx = 2 if 'linux' in pdf else 0
        pytest.raises(ValueError, read_raw_bti, pdf, 'eggs', preload=False)
        pytest.raises(ValueError,
                      read_raw_bti,
                      pdf,
                      config,
                      'spam',
                      preload=False)
        if op.exists(tmp_raw_fname):
            os.remove(tmp_raw_fname)
        ex = read_raw_fif(exported, preload=True)
        ra = read_raw_bti(pdf, config, hs, preload=False)
        assert ('RawBTi' in repr(ra))
        assert_equal(ex.ch_names[:NCH], ra.ch_names[:NCH])
        assert_array_almost_equal(ex.info['dev_head_t']['trans'],
                                  ra.info['dev_head_t']['trans'], 7)
        assert len(ex.info['dig']) in (3563, 5154)
        assert_dig_allclose(ex.info, ra.info, limit=100)
        coil1, coil2 = [
            np.concatenate([d['loc'].flatten() for d in r_.info['chs'][:NCH]])
            for r_ in (ra, ex)
        ]
        assert_array_almost_equal(coil1, coil2, 7)

        loc1, loc2 = [
            np.concatenate([d['loc'].flatten() for d in r_.info['chs'][:NCH]])
            for r_ in (ra, ex)
        ]
        assert_allclose(loc1, loc2)

        assert_allclose(ra[:NCH][0], ex[:NCH][0])
        assert_array_equal([c['range'] for c in ra.info['chs'][:NCH]],
                           [c['range'] for c in ex.info['chs'][:NCH]])
        assert_array_equal([c['cal'] for c in ra.info['chs'][:NCH]],
                           [c['cal'] for c in ex.info['chs'][:NCH]])
        assert_array_equal(ra._cals[:NCH], ex._cals[:NCH])

        # check our transforms
        for key in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'):
            if ex.info[key] is None:
                pass
            else:
                assert (ra.info[key] is not None)
                for ent in ('to', 'from', 'trans'):
                    assert_allclose(ex.info[key][ent], ra.info[key][ent])

        ra.save(tmp_raw_fname)
        re = read_raw_fif(tmp_raw_fname)
        print(re)
        for key in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'):
            assert (isinstance(re.info[key], dict))
            this_t = re.info[key]['trans']
            assert_equal(this_t.shape, (4, 4))
            # check that matrix by is not identity
            assert (not np.allclose(this_t, np.eye(4)))
        os.remove(tmp_raw_fname)
Beispiel #4
0
def test_fif_dig_montage():
    """Test FIF dig montage support"""
    dig_montage = read_dig_montage(fif=fif_dig_montage_fname)

    # Make a BrainVision file like the one the user would have had
    with warnings.catch_warnings(record=True) as w:
        raw_bv = read_raw_brainvision(bv_fname, preload=True)
    assert_true(any('will be dropped' in str(ww.message) for ww in w))
    raw_bv_2 = raw_bv.copy()
    mapping = dict()
    for ii, ch_name in enumerate(raw_bv.ch_names[:-1]):
        mapping[ch_name] = 'EEG%03d' % (ii + 1,)
    raw_bv.rename_channels(mapping)
    for ii, ch_name in enumerate(raw_bv_2.ch_names[:-1]):
        mapping[ch_name] = 'EEG%03d' % (ii + 33,)
    raw_bv_2.rename_channels(mapping)
    raw_bv.drop_channels(['STI 014'])
    raw_bv.add_channels([raw_bv_2])

    # Set the montage
    raw_bv.set_montage(dig_montage)

    # Check the result
    evoked = read_evokeds(evoked_fname)[0]

    assert_equal(len(raw_bv.ch_names), len(evoked.ch_names))
    for ch_py, ch_c in zip(raw_bv.info['chs'], evoked.info['chs']):
        assert_equal(ch_py['ch_name'], ch_c['ch_name'].replace('EEG ', 'EEG'))
        # C actually says it's unknown, but it's not (?):
        # assert_equal(ch_py['coord_frame'], ch_c['coord_frame'])
        assert_equal(ch_py['coord_frame'], FIFF.FIFFV_COORD_HEAD)
        assert_allclose(ch_py['loc'], ch_c['loc'])
    assert_dig_allclose(raw_bv.info, evoked.info)
Beispiel #5
0
def test_ch_loc():
    """Test raw kit loc
    """
    raw_py = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<')
    raw_bin = Raw(op.join(data_dir, 'test_bin_raw.fif'))

    ch_py = raw_py._raw_extras[0]['sensor_locs'][:, :5]
    # ch locs stored as m, not mm
    ch_py[:, :3] *= 1e3
    ch_sns = read_sns(op.join(data_dir, 'sns.txt'))
    assert_array_almost_equal(ch_py, ch_sns, 2)

    assert_array_almost_equal(raw_py.info['dev_head_t']['trans'],
                              raw_bin.info['dev_head_t']['trans'], 4)
    for py_ch, bin_ch in zip(raw_py.info['chs'], raw_bin.info['chs']):
        if bin_ch['ch_name'].startswith('MEG'):
            # the stored ch locs have more precision than the sns.txt
            assert_array_almost_equal(py_ch['loc'], bin_ch['loc'], decimal=2)

    # test when more than one marker file provided
    mrks = [mrk_path, mrk2_path, mrk3_path]
    read_raw_kit(sqd_path, mrks, elp_path, hsp_path, preload=False)
    # this dataset does not have the equivalent set of points :(
    raw_bin.info['dig'] = raw_bin.info['dig'][:8]
    raw_py.info['dig'] = raw_py.info['dig'][:8]
    assert_dig_allclose(raw_py.info, raw_bin.info)
def test_egi_dig_montage():
    """Test EGI MFF XML dig montage support."""
    dig_montage = read_dig_montage(egi=egi_dig_montage_fname, unit='m')

    # # test round-trip IO
    temp_dir = _TempDir()
    fname_temp = op.join(temp_dir, 'egi_test.fif')
    _check_roundtrip(dig_montage, fname_temp)

    # Test coordinate transform
    dig_montage.transform_to_head()
    # nasion
    assert_almost_equal(dig_montage.nasion[0], 0)
    assert_almost_equal(dig_montage.nasion[2], 0)
    # lpa and rpa
    assert_allclose(dig_montage.lpa[1:], 0, atol=1e-16)
    assert_allclose(dig_montage.rpa[1:], 0, atol=1e-16)

    # Test accuracy and embedding within raw object
    raw_egi = read_raw_egi(egi_raw_fname, channel_naming='EEG %03d')
    raw_egi.set_montage(dig_montage)
    test_raw_egi = read_raw_fif(egi_fif_fname)

    assert_equal(len(raw_egi.ch_names), len(test_raw_egi.ch_names))
    for ch_raw, ch_test_raw in zip(raw_egi.info['chs'],
                                   test_raw_egi.info['chs']):
        assert_equal(ch_raw['ch_name'], ch_test_raw['ch_name'])
        assert_equal(ch_raw['coord_frame'], FIFF.FIFFV_COORD_HEAD)
        assert_allclose(ch_raw['loc'], ch_test_raw['loc'], atol=1e-7)
    assert_dig_allclose(raw_egi.info, test_raw_egi.info)
Beispiel #7
0
def test_raw():
    """ Test bti conversion to Raw object """
    for pdf, config, hs, exported in zip(pdf_fnames, config_fnames, hs_fnames,
                                         exported_fnames):
        # rx = 2 if 'linux' in pdf else 0
        assert_raises(ValueError, read_raw_bti, pdf, 'eggs', preload=False)
        assert_raises(ValueError, read_raw_bti, pdf, config, 'spam',
                      preload=False)
        if op.exists(tmp_raw_fname):
            os.remove(tmp_raw_fname)
        ex = Raw(exported, preload=True)
        with warnings.catch_warnings(record=True):  # weight tables
            ra = read_raw_bti(pdf, config, hs, preload=False)
        assert_true('RawBTi' in repr(ra))
        assert_equal(ex.ch_names[:NCH], ra.ch_names[:NCH])
        assert_array_almost_equal(ex.info['dev_head_t']['trans'],
                                  ra.info['dev_head_t']['trans'], 7)
        with warnings.catch_warnings(record=True):  # headshape
            assert_dig_allclose(ex.info, ra.info)
        coil1, coil2 = [np.concatenate([d['loc'].flatten()
                        for d in r_.info['chs'][:NCH]])
                        for r_ in (ra, ex)]
        assert_array_almost_equal(coil1, coil2, 7)

        loc1, loc2 = [np.concatenate([d['loc'].flatten()
                      for d in r_.info['chs'][:NCH]])
                      for r_ in (ra, ex)]
        assert_allclose(loc1, loc2)

        assert_allclose(ra[:NCH][0], ex[:NCH][0])
        assert_array_equal([c['range'] for c in ra.info['chs'][:NCH]],
                           [c['range'] for c in ex.info['chs'][:NCH]])
        assert_array_equal([c['cal'] for c in ra.info['chs'][:NCH]],
                           [c['cal'] for c in ex.info['chs'][:NCH]])
        assert_array_equal(ra._cals[:NCH], ex._cals[:NCH])

        # check our transforms
        for key in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'):
            if ex.info[key] is None:
                pass
            else:
                assert_true(ra.info[key] is not None)
                for ent in ('to', 'from', 'trans'):
                    assert_allclose(ex.info[key][ent],
                                    ra.info[key][ent])

        ra.save(tmp_raw_fname)
        re = Raw(tmp_raw_fname)
        print(re)
        for key in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'):
            assert_true(isinstance(re.info[key], dict))
            this_t = re.info[key]['trans']
            assert_equal(this_t.shape, (4, 4))
            # cehck that matrix by is not identity
            assert_true(not np.allclose(this_t, np.eye(4)))
        os.remove(tmp_raw_fname)
Beispiel #8
0
def test_fif_dig_montage():
    """Test FIF dig montage support."""
    dig_montage = read_dig_montage(fif=fif_dig_montage_fname)

    # test round-trip IO
    temp_dir = _TempDir()
    fname_temp = op.join(temp_dir, 'test.fif')
    _check_roundtrip(dig_montage, fname_temp)

    # Make a BrainVision file like the one the user would have had
    with warnings.catch_warnings(record=True) as w:
        raw_bv = read_raw_brainvision(bv_fname, preload=True)
    assert_true(any('will be dropped' in str(ww.message) for ww in w))
    raw_bv_2 = raw_bv.copy()
    mapping = dict()
    for ii, ch_name in enumerate(raw_bv.ch_names[:-1]):
        mapping[ch_name] = 'EEG%03d' % (ii + 1,)
    raw_bv.rename_channels(mapping)
    for ii, ch_name in enumerate(raw_bv_2.ch_names[:-1]):
        mapping[ch_name] = 'EEG%03d' % (ii + 33,)
    raw_bv_2.rename_channels(mapping)
    raw_bv.drop_channels(['STI 014'])
    raw_bv.add_channels([raw_bv_2])

    for ii in range(2):
        if ii == 1:
            dig_montage.transform_to_head()  # should have no meaningful effect

        # Set the montage
        raw_bv.set_montage(dig_montage)

        # Check the result
        evoked = read_evokeds(evoked_fname)[0]

        assert_equal(len(raw_bv.ch_names), len(evoked.ch_names))
        for ch_py, ch_c in zip(raw_bv.info['chs'], evoked.info['chs']):
            assert_equal(ch_py['ch_name'],
                         ch_c['ch_name'].replace('EEG ', 'EEG'))
            # C actually says it's unknown, but it's not (?):
            # assert_equal(ch_py['coord_frame'], ch_c['coord_frame'])
            assert_equal(ch_py['coord_frame'], FIFF.FIFFV_COORD_HEAD)
            c_loc = ch_c['loc'].copy()
            c_loc[c_loc == 0] = np.nan
            assert_allclose(ch_py['loc'], c_loc, atol=1e-7)
        assert_dig_allclose(raw_bv.info, evoked.info)

    # Roundtrip of non-FIF start
    names = ['nasion', 'lpa', 'rpa', '1', '2', '3', '4', '5']
    montage = read_dig_montage(hsp, hpi, elp, names, transform=False)
    assert_raises(RuntimeError, montage.save, fname_temp)  # must be head coord
    montage = read_dig_montage(hsp, hpi, elp, names)
    _check_roundtrip(montage, fname_temp)
def test_fif_dig_montage():
    """Test FIF dig montage support."""
    dig_montage = read_dig_montage(fif=fif_dig_montage_fname)

    # test round-trip IO
    temp_dir = _TempDir()
    fname_temp = op.join(temp_dir, 'test.fif')
    _check_roundtrip(dig_montage, fname_temp)

    # Make a BrainVision file like the one the user would have had
    with warnings.catch_warnings(record=True) as w:
        raw_bv = read_raw_brainvision(bv_fname, preload=True)
    assert_true(any('will be dropped' in str(ww.message) for ww in w))
    raw_bv_2 = raw_bv.copy()
    mapping = dict()
    for ii, ch_name in enumerate(raw_bv.ch_names[:-1]):
        mapping[ch_name] = 'EEG%03d' % (ii + 1,)
    raw_bv.rename_channels(mapping)
    for ii, ch_name in enumerate(raw_bv_2.ch_names[:-1]):
        mapping[ch_name] = 'EEG%03d' % (ii + 33,)
    raw_bv_2.rename_channels(mapping)
    raw_bv.drop_channels(['STI 014'])
    raw_bv.add_channels([raw_bv_2])

    for ii in range(2):
        if ii == 1:
            dig_montage.transform_to_head()  # should have no meaningful effect

        # Set the montage
        raw_bv.set_montage(dig_montage)

        # Check the result
        evoked = read_evokeds(evoked_fname)[0]

        assert_equal(len(raw_bv.ch_names), len(evoked.ch_names))
        for ch_py, ch_c in zip(raw_bv.info['chs'], evoked.info['chs']):
            assert_equal(ch_py['ch_name'],
                         ch_c['ch_name'].replace('EEG ', 'EEG'))
            # C actually says it's unknown, but it's not (?):
            # assert_equal(ch_py['coord_frame'], ch_c['coord_frame'])
            assert_equal(ch_py['coord_frame'], FIFF.FIFFV_COORD_HEAD)
            c_loc = ch_c['loc'].copy()
            c_loc[c_loc == 0] = np.nan
            assert_allclose(ch_py['loc'], c_loc, atol=1e-7)
        assert_dig_allclose(raw_bv.info, evoked.info)

    # Roundtrip of non-FIF start
    names = ['nasion', 'lpa', 'rpa', '1', '2', '3', '4', '5']
    montage = read_dig_montage(hsp, hpi, elp, names, transform=False)
    assert_raises(RuntimeError, montage.save, fname_temp)  # must be head coord
    montage = read_dig_montage(hsp, hpi, elp, names)
    _check_roundtrip(montage, fname_temp)
Beispiel #10
0
def test_read_ctf():
    """Test CTF reader"""
    temp_dir = _TempDir()
    out_fname = op.join(temp_dir, 'test_py_raw.fif')

    # Create a dummy .eeg file so we can test our reading/application of it
    os.mkdir(op.join(temp_dir, 'randpos'))
    ctf_eeg_fname = op.join(temp_dir, 'randpos', ctf_fname_catch)
    shutil.copytree(op.join(ctf_dir, ctf_fname_catch), ctf_eeg_fname)
    with warnings.catch_warnings(record=True) as w:  # reclassified ch
        raw = _test_raw_reader(read_raw_ctf, directory=ctf_eeg_fname)
    assert_true(all('MISC channel' in str(ww.message) for ww in w))
    picks = pick_types(raw.info, meg=False, eeg=True)
    pos = np.random.RandomState(42).randn(len(picks), 3)
    fake_eeg_fname = op.join(ctf_eeg_fname, 'catch-alp-good-f.eeg')
    # Create a bad file
    with open(fake_eeg_fname, 'wb') as fid:
        fid.write('foo\n'.encode('ascii'))
    assert_raises(RuntimeError, read_raw_ctf, ctf_eeg_fname)
    # Create a good file
    with open(fake_eeg_fname, 'wb') as fid:
        for ii, ch_num in enumerate(picks):
            args = (
                str(ch_num + 1),
                raw.ch_names[ch_num],
            ) + tuple('%0.5f' % x for x in 100 * pos[ii])  # convert to cm
            fid.write(('\t'.join(args) + '\n').encode('ascii'))
    pos_read_old = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    with warnings.catch_warnings(record=True) as w:  # reclassified channel
        raw = read_raw_ctf(ctf_eeg_fname)  # read modified data
    assert_true(all('MISC channel' in str(ww.message) for ww in w))
    pos_read = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    assert_allclose(apply_trans(raw.info['ctf_head_t'], pos),
                    pos_read,
                    rtol=1e-5,
                    atol=1e-5)
    assert_true((pos_read == pos_read_old).mean() < 0.1)
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_randpos_raw.fif'),
                op.join(temp_dir, 'randpos', 'catch-alp-good-f.ds_raw.fif'))

    # Create a version with no hc, starting out *with* EEG pos (error)
    os.mkdir(op.join(temp_dir, 'nohc'))
    ctf_no_hc_fname = op.join(temp_dir, 'no_hc', ctf_fname_catch)
    shutil.copytree(ctf_eeg_fname, ctf_no_hc_fname)
    remove_base = op.join(ctf_no_hc_fname, op.basename(ctf_fname_catch[:-3]))
    os.remove(remove_base + '.hc')
    with warnings.catch_warnings(record=True):  # no coord tr
        assert_raises(RuntimeError, read_raw_ctf, ctf_no_hc_fname)
    os.remove(remove_base + '.eeg')
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_nohc_raw.fif'),
                op.join(temp_dir, 'no_hc', 'catch-alp-good-f.ds_raw.fif'))

    # All our files
    use_fnames = [op.join(ctf_dir, c) for c in ctf_fnames]
    for fname in use_fnames:
        raw_c = Raw(fname + '_raw.fif', add_eeg_ref=False, preload=True)
        with warnings.catch_warnings(record=True) as w:  # reclassified ch
            raw = read_raw_ctf(fname)
        assert_true(all('MISC channel' in str(ww.message) for ww in w))

        # check info match
        assert_array_equal(raw.ch_names, raw_c.ch_names)
        assert_allclose(raw.times, raw_c.times)
        assert_allclose(raw._cals, raw_c._cals)
        for key in ('version', 'usecs'):
            assert_equal(raw.info['meas_id'][key], raw_c.info['meas_id'][key])
        py_time = raw.info['meas_id']['secs']
        c_time = raw_c.info['meas_id']['secs']
        max_offset = 24 * 60 * 60  # probably overkill but covers timezone
        assert_true(c_time - max_offset <= py_time <= c_time)
        for t in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'):
            assert_allclose(raw.info[t]['trans'],
                            raw_c.info[t]['trans'],
                            rtol=1e-4,
                            atol=1e-7)
        for key in ('acq_pars', 'acq_stim', 'bads', 'ch_names',
                    'custom_ref_applied', 'description', 'events',
                    'experimenter', 'highpass', 'line_freq', 'lowpass',
                    'nchan', 'proj_id', 'proj_name', 'projs', 'sfreq',
                    'subject_info'):
            assert_equal(raw.info[key], raw_c.info[key], key)
        if op.basename(fname) not in single_trials:
            # We don't force buffer size to be smaller like MNE-C
            assert_equal(raw.info['buffer_size_sec'],
                         raw_c.info['buffer_size_sec'])
        assert_equal(len(raw.info['comps']), len(raw_c.info['comps']))
        for c1, c2 in zip(raw.info['comps'], raw_c.info['comps']):
            for key in ('colcals', 'rowcals'):
                assert_allclose(c1[key], c2[key])
            assert_equal(c1['save_calibrated'], c2['save_calibrated'])
            for key in ('row_names', 'col_names', 'nrow', 'ncol'):
                assert_array_equal(c1['data'][key], c2['data'][key])
            assert_allclose(c1['data']['data'],
                            c2['data']['data'],
                            atol=1e-7,
                            rtol=1e-5)
        assert_allclose(raw.info['hpi_results'][0]['coord_trans']['trans'],
                        raw_c.info['hpi_results'][0]['coord_trans']['trans'],
                        rtol=1e-5,
                        atol=1e-7)
        assert_equal(len(raw.info['chs']), len(raw_c.info['chs']))
        for ii, (c1, c2) in enumerate(zip(raw.info['chs'], raw_c.info['chs'])):
            for key in ('kind', 'scanno', 'unit', 'ch_name', 'unit_mul',
                        'range', 'coord_frame', 'coil_type', 'logno'):
                if c1['ch_name'] == 'RMSP' and \
                        'catch-alp-good-f' in fname and \
                        key in ('kind', 'unit', 'coord_frame', 'coil_type',
                                'logno'):
                    continue  # XXX see below...
                assert_equal(c1[key], c2[key], err_msg=key)
            for key in ('cal', ):
                assert_allclose(c1[key],
                                c2[key],
                                atol=1e-6,
                                rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
            # XXX 2016/02/24: fixed bug with normal computation that used
            # to exist, once mne-C tools are updated we should update our FIF
            # conversion files, then the slices can go away (and the check
            # can be combined with that for "cal")
            for key in ('loc', ):
                if c1['ch_name'] == 'RMSP' and 'catch-alp-good-f' in fname:
                    continue
                assert_allclose(c1[key][:3],
                                c2[key][:3],
                                atol=1e-6,
                                rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
                assert_allclose(c1[key][9:12],
                                c2[key][9:12],
                                atol=1e-6,
                                rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
        if fname.endswith('catch-alp-good-f.ds'):  # omit points from .pos file
            raw.info['dig'] = raw.info['dig'][:-10]
        assert_dig_allclose(raw.info, raw_c.info)

        # check data match
        raw_c.save(out_fname, overwrite=True, buffer_size_sec=1.)
        raw_read = Raw(out_fname, add_eeg_ref=False)

        # so let's check tricky cases based on sample boundaries
        rng = np.random.RandomState(0)
        pick_ch = rng.permutation(np.arange(len(raw.ch_names)))[:10]
        bnd = int(round(raw.info['sfreq'] * raw.info['buffer_size_sec']))
        assert_equal(bnd, raw._raw_extras[0]['block_size'])
        assert_equal(bnd, block_sizes[op.basename(fname)])
        slices = (slice(0, bnd), slice(bnd - 1, bnd), slice(3, bnd),
                  slice(3, 300), slice(None))
        if len(raw.times) >= 2 * bnd:  # at least two complete blocks
            slices = slices + (slice(bnd, 2 * bnd), slice(
                bnd, bnd + 1), slice(0, bnd + 100))
        for sl_time in slices:
            assert_allclose(raw[pick_ch, sl_time][0], raw_c[pick_ch,
                                                            sl_time][0])
            assert_allclose(raw_read[pick_ch, sl_time][0], raw_c[pick_ch,
                                                                 sl_time][0])
        # all data / preload
        with warnings.catch_warnings(record=True) as w:  # reclassified ch
            raw = read_raw_ctf(fname, preload=True)
        assert_true(all('MISC channel' in str(ww.message) for ww in w))
        assert_allclose(raw[:][0], raw_c[:][0])
    raw.plot(show=False)  # Test plotting with ref_meg channels.
    assert_raises(ValueError, raw.plot, order='selection')
    assert_raises(TypeError, read_raw_ctf, 1)
    assert_raises(ValueError, read_raw_ctf, ctf_fname_continuous + 'foo.ds')
    # test ignoring of system clock
    read_raw_ctf(op.join(ctf_dir, ctf_fname_continuous), 'ignore')
    assert_raises(ValueError, read_raw_ctf,
                  op.join(ctf_dir, ctf_fname_continuous), 'foo')
Beispiel #11
0
def test_read_ctf():
    """Test CTF reader"""
    temp_dir = _TempDir()
    out_fname = op.join(temp_dir, 'test_py_raw.fif')

    # Create a dummy .eeg file so we can test our reading/application of it
    os.mkdir(op.join(temp_dir, 'randpos'))
    ctf_eeg_fname = op.join(temp_dir, 'randpos', ctf_fname_catch)
    shutil.copytree(op.join(ctf_dir, ctf_fname_catch), ctf_eeg_fname)
    with warnings.catch_warnings(record=True) as w:  # reclassified ch
        raw = _test_raw_reader(read_raw_ctf, directory=ctf_eeg_fname)
    assert_true(all('MISC channel' in str(ww.message) for ww in w))
    picks = pick_types(raw.info, meg=False, eeg=True)
    pos = np.random.RandomState(42).randn(len(picks), 3)
    fake_eeg_fname = op.join(ctf_eeg_fname, 'catch-alp-good-f.eeg')
    # Create a bad file
    with open(fake_eeg_fname, 'wb') as fid:
        fid.write('foo\n'.encode('ascii'))
    assert_raises(RuntimeError, read_raw_ctf, ctf_eeg_fname)
    # Create a good file
    with open(fake_eeg_fname, 'wb') as fid:
        for ii, ch_num in enumerate(picks):
            args = (str(ch_num + 1), raw.ch_names[ch_num],) + tuple(
                '%0.5f' % x for x in 100 * pos[ii])  # convert to cm
            fid.write(('\t'.join(args) + '\n').encode('ascii'))
    pos_read_old = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    with warnings.catch_warnings(record=True) as w:  # reclassified channel
        raw = read_raw_ctf(ctf_eeg_fname)  # read modified data
    assert_true(all('MISC channel' in str(ww.message) for ww in w))
    pos_read = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    assert_allclose(apply_trans(raw.info['ctf_head_t'], pos), pos_read,
                    rtol=1e-5, atol=1e-5)
    assert_true((pos_read == pos_read_old).mean() < 0.1)
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_randpos_raw.fif'),
                op.join(temp_dir, 'randpos', 'catch-alp-good-f.ds_raw.fif'))

    # Create a version with no hc, starting out *with* EEG pos (error)
    os.mkdir(op.join(temp_dir, 'nohc'))
    ctf_no_hc_fname = op.join(temp_dir, 'no_hc', ctf_fname_catch)
    shutil.copytree(ctf_eeg_fname, ctf_no_hc_fname)
    remove_base = op.join(ctf_no_hc_fname, op.basename(ctf_fname_catch[:-3]))
    os.remove(remove_base + '.hc')
    with warnings.catch_warnings(record=True):  # no coord tr
        assert_raises(RuntimeError, read_raw_ctf, ctf_no_hc_fname)
    os.remove(remove_base + '.eeg')
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_nohc_raw.fif'),
                op.join(temp_dir, 'no_hc', 'catch-alp-good-f.ds_raw.fif'))

    # All our files
    use_fnames = [op.join(ctf_dir, c) for c in ctf_fnames]
    for fname in use_fnames:
        raw_c = Raw(fname + '_raw.fif', add_eeg_ref=False, preload=True)
        with warnings.catch_warnings(record=True) as w:  # reclassified ch
            raw = read_raw_ctf(fname)
        assert_true(all('MISC channel' in str(ww.message) for ww in w))

        # check info match
        assert_array_equal(raw.ch_names, raw_c.ch_names)
        assert_allclose(raw.times, raw_c.times)
        assert_allclose(raw._cals, raw_c._cals)
        for key in ('version', 'usecs'):
            assert_equal(raw.info['meas_id'][key], raw_c.info['meas_id'][key])
        py_time = raw.info['meas_id']['secs']
        c_time = raw_c.info['meas_id']['secs']
        max_offset = 24 * 60 * 60  # probably overkill but covers timezone
        assert_true(c_time - max_offset <= py_time <= c_time)
        for t in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'):
            assert_allclose(raw.info[t]['trans'], raw_c.info[t]['trans'],
                            rtol=1e-4, atol=1e-7)
        for key in ('acq_pars', 'acq_stim', 'bads',
                    'ch_names', 'custom_ref_applied', 'description',
                    'events', 'experimenter', 'highpass', 'line_freq',
                    'lowpass', 'nchan', 'proj_id', 'proj_name',
                    'projs', 'sfreq', 'subject_info'):
            assert_equal(raw.info[key], raw_c.info[key], key)
        if op.basename(fname) not in single_trials:
            # We don't force buffer size to be smaller like MNE-C
            assert_equal(raw.info['buffer_size_sec'],
                         raw_c.info['buffer_size_sec'])
        assert_equal(len(raw.info['comps']), len(raw_c.info['comps']))
        for c1, c2 in zip(raw.info['comps'], raw_c.info['comps']):
            for key in ('colcals', 'rowcals'):
                assert_allclose(c1[key], c2[key])
            assert_equal(c1['save_calibrated'], c2['save_calibrated'])
            for key in ('row_names', 'col_names', 'nrow', 'ncol'):
                assert_array_equal(c1['data'][key], c2['data'][key])
            assert_allclose(c1['data']['data'], c2['data']['data'], atol=1e-7,
                            rtol=1e-5)
        assert_allclose(raw.info['hpi_results'][0]['coord_trans']['trans'],
                        raw_c.info['hpi_results'][0]['coord_trans']['trans'],
                        rtol=1e-5, atol=1e-7)
        assert_equal(len(raw.info['chs']), len(raw_c.info['chs']))
        for ii, (c1, c2) in enumerate(zip(raw.info['chs'], raw_c.info['chs'])):
            for key in ('kind', 'scanno', 'unit', 'ch_name', 'unit_mul',
                        'range', 'coord_frame', 'coil_type', 'logno'):
                if c1['ch_name'] == 'RMSP' and \
                        'catch-alp-good-f' in fname and \
                        key in ('kind', 'unit', 'coord_frame', 'coil_type',
                                'logno'):
                    continue  # XXX see below...
                assert_equal(c1[key], c2[key], err_msg=key)
            for key in ('cal',):
                assert_allclose(c1[key], c2[key], atol=1e-6, rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
            # XXX 2016/02/24: fixed bug with normal computation that used
            # to exist, once mne-C tools are updated we should update our FIF
            # conversion files, then the slices can go away (and the check
            # can be combined with that for "cal")
            for key in ('loc',):
                if c1['ch_name'] == 'RMSP' and 'catch-alp-good-f' in fname:
                    continue
                assert_allclose(c1[key][:3], c2[key][:3], atol=1e-6, rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
                assert_allclose(c1[key][9:12], c2[key][9:12], atol=1e-6,
                                rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
        if fname.endswith('catch-alp-good-f.ds'):  # omit points from .pos file
            raw.info['dig'] = raw.info['dig'][:-10]
        assert_dig_allclose(raw.info, raw_c.info)

        # check data match
        raw_c.save(out_fname, overwrite=True, buffer_size_sec=1.)
        raw_read = Raw(out_fname, add_eeg_ref=False)

        # so let's check tricky cases based on sample boundaries
        rng = np.random.RandomState(0)
        pick_ch = rng.permutation(np.arange(len(raw.ch_names)))[:10]
        bnd = int(round(raw.info['sfreq'] * raw.info['buffer_size_sec']))
        assert_equal(bnd, raw._raw_extras[0]['block_size'])
        assert_equal(bnd, block_sizes[op.basename(fname)])
        slices = (slice(0, bnd), slice(bnd - 1, bnd), slice(3, bnd),
                  slice(3, 300), slice(None))
        if len(raw.times) >= 2 * bnd:  # at least two complete blocks
            slices = slices + (slice(bnd, 2 * bnd), slice(bnd, bnd + 1),
                               slice(0, bnd + 100))
        for sl_time in slices:
            assert_allclose(raw[pick_ch, sl_time][0],
                            raw_c[pick_ch, sl_time][0])
            assert_allclose(raw_read[pick_ch, sl_time][0],
                            raw_c[pick_ch, sl_time][0])
        # all data / preload
        with warnings.catch_warnings(record=True) as w:  # reclassified ch
            raw = read_raw_ctf(fname, preload=True)
        assert_true(all('MISC channel' in str(ww.message) for ww in w))
        assert_allclose(raw[:][0], raw_c[:][0])
    assert_raises(TypeError, read_raw_ctf, 1)
    assert_raises(ValueError, read_raw_ctf, ctf_fname_continuous + 'foo.ds')
    # test ignoring of system clock
    read_raw_ctf(op.join(ctf_dir, ctf_fname_continuous), 'ignore')
    assert_raises(ValueError, read_raw_ctf,
                  op.join(ctf_dir, ctf_fname_continuous), 'foo')