Beispiel #1
0
def test_tfr_multitaper():
    """Test tfr_multitaper"""
    sfreq = 200.0
    ch_names = ['SIM0001', 'SIM0002', 'SIM0003']
    ch_types = ['grad', 'grad', 'grad']
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)

    n_times = int(sfreq)  # Second long epochs
    n_epochs = 3
    seed = 42
    rng = np.random.RandomState(seed)
    noise = 0.1 * rng.randn(n_epochs, len(ch_names), n_times)
    t = np.arange(n_times, dtype=np.float) / sfreq
    signal = np.sin(np.pi * 2. * 50. * t)  # 50 Hz sinusoid signal
    signal[np.logical_or(t < 0.45, t > 0.55)] = 0.  # Hard windowing
    on_time = np.logical_and(t >= 0.45, t <= 0.55)
    signal[on_time] *= np.hanning(on_time.sum())  # Ramping
    dat = noise + signal

    reject = dict(grad=4000.)
    events = np.empty((n_epochs, 3), int)
    first_event_sample = 100
    event_id = dict(sin50hz=1)
    for k in range(n_epochs):
        events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz']

    epochs = EpochsArray(data=dat, info=info, events=events, event_id=event_id,
                         reject=reject)

    freqs = np.arange(5, 100, 3, dtype=np.float)
    power, itc = tfr_multitaper(epochs, freqs=freqs, n_cycles=freqs / 2.,
                                time_bandwidth=4.0)
    picks = np.arange(len(ch_names))
    power_picks, itc_picks = tfr_multitaper(epochs, freqs=freqs,
                                            n_cycles=freqs / 2.,
                                            time_bandwidth=4.0, picks=picks)
    power_evoked = tfr_multitaper(epochs.average(), freqs=freqs,
                                  n_cycles=freqs / 2., time_bandwidth=4.0,
                                  return_itc=False)
    # test picks argument
    assert_array_almost_equal(power.data, power_picks.data)
    assert_array_almost_equal(itc.data, itc_picks.data)
    # one is squared magnitude of the average (evoked) and
    # the other is average of the squared magnitudes (epochs PSD)
    # so values shouldn't match, but shapes should
    assert_array_equal(power.data.shape, power_evoked.data.shape)
    assert_raises(AssertionError, assert_array_almost_equal,
                  power.data, power_evoked.data)

    tmax = t[np.argmax(itc.data[0, freqs == 50, :])]
    fmax = freqs[np.argmax(power.data[1, :, t == 0.5])]
    assert_true(tmax > 0.3 and tmax < 0.7)
    assert_false(np.any(itc.data < 0.))
    assert_true(fmax > 40 and fmax < 60)
Beispiel #2
0
def test_tfr_multitaper():
    """Test tfr_multitaper"""
    sfreq = 200.0
    ch_names = ['SIM0001', 'SIM0002', 'SIM0003']
    ch_types = ['grad', 'grad', 'grad']
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)

    n_times = int(sfreq)  # Second long epochs
    n_epochs = 3
    seed = 42
    rng = np.random.RandomState(seed)
    noise = 0.1 * rng.randn(n_epochs, len(ch_names), n_times)
    t = np.arange(n_times, dtype=np.float) / sfreq
    signal = np.sin(np.pi * 2. * 50. * t)  # 50 Hz sinusoid signal
    signal[np.logical_or(t < 0.45, t > 0.55)] = 0.  # Hard windowing
    on_time = np.logical_and(t >= 0.45, t <= 0.55)
    signal[on_time] *= np.hanning(on_time.sum())  # Ramping
    dat = noise + signal

    reject = dict(grad=4000.)
    events = np.empty((n_epochs, 3), int)
    first_event_sample = 100
    event_id = dict(sin50hz=1)
    for k in range(n_epochs):
        events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz']

    epochs = EpochsArray(data=dat,
                         info=info,
                         events=events,
                         event_id=event_id,
                         reject=reject)

    freqs = np.arange(5, 100, 3, dtype=np.float)
    power, itc = tfr_multitaper(epochs,
                                freqs=freqs,
                                n_cycles=freqs / 2.,
                                time_bandwidth=4.0)
    power_evoked = tfr_multitaper(epochs.average(),
                                  freqs=freqs,
                                  n_cycles=freqs / 2.,
                                  time_bandwidth=4.0,
                                  return_itc=False)
    # one is squared magnitude of the average (evoked) and
    # the other is average of the squared magnitudes (epochs PSD)
    # so values shouldn't match, but shapes should
    assert_array_equal(power.data.shape, power_evoked.data.shape)
    assert_raises(AssertionError, assert_array_almost_equal, power.data,
                  power_evoked.data)

    tmax = t[np.argmax(itc.data[0, freqs == 50, :])]
    fmax = freqs[np.argmax(power.data[1, :, t == 0.5])]
    assert_true(tmax > 0.3 and tmax < 0.7)
    assert_false(np.any(itc.data < 0.))
    assert_true(fmax > 40 and fmax < 60)
Beispiel #3
0
def test_add_noise():
    """Test noise addition."""
    if check_version('numpy', '1.17'):
        rng = np.random.default_rng(0)
    else:
        rng = np.random.RandomState(0)
    raw = read_raw_fif(raw_fname)
    raw.del_proj()
    picks = pick_types(raw.info, meg=True, eeg=True, exclude=())
    cov = compute_raw_covariance(raw, picks=picks)
    with pytest.raises(RuntimeError, match='to be loaded'):
        add_noise(raw, cov)
    raw.crop(0, 1).load_data()
    with pytest.raises(TypeError, match='Raw, Epochs, or Evoked'):
        add_noise(0., cov)
    with pytest.raises(TypeError, match='Covariance'):
        add_noise(raw, 0.)
    # test a no-op (data preserved)
    orig_data = raw[:][0]
    zero_cov = cov.copy()
    zero_cov['data'].fill(0)
    add_noise(raw, zero_cov)
    new_data = raw[:][0]
    assert_allclose(orig_data, new_data, atol=1e-30)
    # set to zero to make comparisons easier
    raw._data[:] = 0.
    epochs = EpochsArray(np.zeros((1, len(raw.ch_names), 100)),
                         raw.info.copy())
    epochs.info['bads'] = []
    evoked = epochs.average(picks=np.arange(len(raw.ch_names)))
    for inst in (raw, epochs, evoked):
        with catch_logging() as log:
            add_noise(inst, cov, random_state=rng, verbose=True)
        log = log.getvalue()
        want = ('to {0}/{1} channels ({0}'
                .format(len(cov['names']), len(raw.ch_names)))
        assert want in log
        if inst is evoked:
            inst = EpochsArray(inst.data[np.newaxis], inst.info)
        if inst is raw:
            cov_new = compute_raw_covariance(inst, picks=picks)
        else:
            cov_new = compute_covariance(inst)
        assert cov['names'] == cov_new['names']
        r = np.corrcoef(cov['data'].ravel(), cov_new['data'].ravel())[0, 1]
        assert r > 0.99
Beispiel #4
0
def test_add_noise():
    """Test noise addition."""
    rng = np.random.RandomState(0)
    data_path = testing.data_path()
    raw = read_raw_fif(data_path + '/MEG/sample/sample_audvis_trunc_raw.fif')
    raw.del_proj()
    picks = pick_types(raw.info, eeg=True, exclude=())
    cov = compute_raw_covariance(raw, picks=picks)
    with pytest.raises(RuntimeError, match='to be loaded'):
        add_noise(raw, cov)
    raw.crop(0, 1).load_data()
    with pytest.raises(TypeError, match='Raw, Epochs, or Evoked'):
        add_noise(0., cov)
    with pytest.raises(TypeError, match='Covariance'):
        add_noise(raw, 0.)
    # test a no-op (data preserved)
    orig_data = raw[:][0]
    zero_cov = cov.copy()
    zero_cov['data'].fill(0)
    add_noise(raw, zero_cov)
    new_data = raw[:][0]
    assert_allclose(orig_data, new_data, atol=1e-30)
    # set to zero to make comparisons easier
    raw._data[:] = 0.
    epochs = EpochsArray(np.zeros((1, len(raw.ch_names), 100)),
                         raw.info.copy())
    epochs.info['bads'] = []
    evoked = epochs.average(picks=np.arange(len(raw.ch_names)))
    for inst in (raw, epochs, evoked):
        with catch_logging() as log:
            add_noise(inst, cov, random_state=rng, verbose=True)
        log = log.getvalue()
        want = ('to {0}/{1} channels ({0}'
                .format(len(cov['names']), len(raw.ch_names)))
        assert want in log
        if inst is evoked:
            inst = EpochsArray(inst.data[np.newaxis], inst.info)
        if inst is raw:
            cov_new = compute_raw_covariance(inst, picks=picks,
                                             verbose='error')  # samples
        else:
            cov_new = compute_covariance(inst, verbose='error')  # avg ref
        assert cov['names'] == cov_new['names']
        r = np.corrcoef(cov['data'].ravel(), cov_new['data'].ravel())[0, 1]
        assert r > 0.99
Beispiel #5
0
def test_decim():
    """Test evoked decimation."""
    rng = np.random.RandomState(0)
    n_epochs, n_channels, n_times = 5, 10, 20
    dec_1, dec_2 = 2, 3
    decim = dec_1 * dec_2
    sfreq = 1000.
    sfreq_new = sfreq / decim
    data = rng.randn(n_epochs, n_channels, n_times)
    events = np.array([np.arange(n_epochs), [0] * n_epochs, [1] * n_epochs]).T
    info = create_info(n_channels, sfreq, 'eeg')
    info['lowpass'] = sfreq_new / float(decim)
    epochs = EpochsArray(data, info, events)
    data_epochs = epochs.copy().decimate(decim).get_data()
    data_epochs_2 = epochs.copy().decimate(decim, offset=1).get_data()
    data_epochs_3 = epochs.decimate(dec_1).decimate(dec_2).get_data()
    assert_array_equal(data_epochs, data[:, :, ::decim])
    assert_array_equal(data_epochs_2, data[:, :, 1::decim])
    assert_array_equal(data_epochs, data_epochs_3)

    # Now let's do it with some real data
    raw = read_raw_fif(raw_fname, add_eeg_ref=False)
    events = read_events(event_name)
    sfreq_new = raw.info['sfreq'] / decim
    raw.info['lowpass'] = sfreq_new / 4.  # suppress aliasing warnings
    picks = pick_types(raw.info, meg=True, eeg=True, exclude=())
    epochs = Epochs(raw, events, 1, -0.2, 0.5, picks=picks, preload=True,
                    add_eeg_ref=False)
    for offset in (0, 1):
        ev_ep_decim = epochs.copy().decimate(decim, offset).average()
        ev_decim = epochs.average().decimate(decim, offset)
        expected_times = epochs.times[offset::decim]
        assert_allclose(ev_decim.times, expected_times)
        assert_allclose(ev_ep_decim.times, expected_times)
        expected_data = epochs.get_data()[:, :, offset::decim].mean(axis=0)
        assert_allclose(ev_decim.data, expected_data)
        assert_allclose(ev_ep_decim.data, expected_data)
        assert_equal(ev_decim.info['sfreq'], sfreq_new)
        assert_array_equal(ev_decim.times, expected_times)
Beispiel #6
0
def test_tfr_multitaper():
    """Test tfr_multitaper."""
    sfreq = 200.0
    ch_names = ['SIM0001', 'SIM0002']
    ch_types = ['grad', 'grad']
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)

    n_times = int(sfreq)  # Second long epochs
    n_epochs = 3
    seed = 42
    rng = np.random.RandomState(seed)
    noise = 0.1 * rng.randn(n_epochs, len(ch_names), n_times)
    t = np.arange(n_times, dtype=np.float64) / sfreq
    signal = np.sin(np.pi * 2. * 50. * t)  # 50 Hz sinusoid signal
    signal[np.logical_or(t < 0.45, t > 0.55)] = 0.  # Hard windowing
    on_time = np.logical_and(t >= 0.45, t <= 0.55)
    signal[on_time] *= np.hanning(on_time.sum())  # Ramping
    dat = noise + signal

    reject = dict(grad=4000.)
    events = np.empty((n_epochs, 3), int)
    first_event_sample = 100
    event_id = dict(sin50hz=1)
    for k in range(n_epochs):
        events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz']

    epochs = EpochsArray(data=dat,
                         info=info,
                         events=events,
                         event_id=event_id,
                         reject=reject)

    freqs = np.arange(35, 70, 5, dtype=np.float64)

    power, itc = tfr_multitaper(epochs,
                                freqs=freqs,
                                n_cycles=freqs / 2.,
                                time_bandwidth=4.0)
    power2, itc2 = tfr_multitaper(epochs,
                                  freqs=freqs,
                                  n_cycles=freqs / 2.,
                                  time_bandwidth=4.0,
                                  decim=slice(0, 2))
    picks = np.arange(len(ch_names))
    power_picks, itc_picks = tfr_multitaper(epochs,
                                            freqs=freqs,
                                            n_cycles=freqs / 2.,
                                            time_bandwidth=4.0,
                                            picks=picks)
    power_epochs = tfr_multitaper(epochs,
                                  freqs=freqs,
                                  n_cycles=freqs / 2.,
                                  time_bandwidth=4.0,
                                  return_itc=False,
                                  average=False)
    power_averaged = power_epochs.average()
    power_evoked = tfr_multitaper(epochs.average(),
                                  freqs=freqs,
                                  n_cycles=freqs / 2.,
                                  time_bandwidth=4.0,
                                  return_itc=False,
                                  average=False).average()

    print(power_evoked)  # test repr for EpochsTFR

    # Test channel picking
    power_epochs_picked = power_epochs.copy().drop_channels(['SIM0002'])
    assert_equal(power_epochs_picked.data.shape, (3, 1, 7, 200))
    assert_equal(power_epochs_picked.ch_names, ['SIM0001'])

    pytest.raises(ValueError,
                  tfr_multitaper,
                  epochs,
                  freqs=freqs,
                  n_cycles=freqs / 2.,
                  return_itc=True,
                  average=False)

    # test picks argument
    assert_array_almost_equal(power.data, power_picks.data)
    assert_array_almost_equal(power.data, power_averaged.data)
    assert_array_almost_equal(power.times, power_epochs.times)
    assert_array_almost_equal(power.times, power_averaged.times)
    assert_equal(power.nave, power_averaged.nave)
    assert_equal(power_epochs.data.shape, (3, 2, 7, 200))
    assert_array_almost_equal(itc.data, itc_picks.data)
    # one is squared magnitude of the average (evoked) and
    # the other is average of the squared magnitudes (epochs PSD)
    # so values shouldn't match, but shapes should
    assert_array_equal(power.data.shape, power_evoked.data.shape)
    pytest.raises(AssertionError, assert_array_almost_equal, power.data,
                  power_evoked.data)

    tmax = t[np.argmax(itc.data[0, freqs == 50, :])]
    fmax = freqs[np.argmax(power.data[1, :, t == 0.5])]
    assert (tmax > 0.3 and tmax < 0.7)
    assert not np.any(itc.data < 0.)
    assert (fmax > 40 and fmax < 60)
    assert (power2.data.shape == (len(picks), len(freqs), 2))
    assert (power2.data.shape == itc2.data.shape)

    # Test decim parameter checks and compatibility between wavelets length
    # and instance length in the time dimension.
    pytest.raises(TypeError,
                  tfr_multitaper,
                  epochs,
                  freqs=freqs,
                  n_cycles=freqs / 2.,
                  time_bandwidth=4.0,
                  decim=(1, ))
    pytest.raises(ValueError,
                  tfr_multitaper,
                  epochs,
                  freqs=freqs,
                  n_cycles=1000,
                  time_bandwidth=4.0)

    # Test invalid frequency arguments
    with pytest.raises(ValueError, match=" 'freqs' must be greater than 0"):
        tfr_multitaper(epochs, freqs=np.arange(0, 3), n_cycles=7)
    with pytest.raises(ValueError, match=" 'freqs' must be greater than 0"):
        tfr_multitaper(epochs, freqs=np.arange(-4, -1), n_cycles=7)
Beispiel #7
0
def test_tfr_multitaper():
    """Test tfr_multitaper."""
    sfreq = 200.0
    ch_names = ['SIM0001', 'SIM0002']
    ch_types = ['grad', 'grad']
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)

    n_times = int(sfreq)  # Second long epochs
    n_epochs = 3
    seed = 42
    rng = np.random.RandomState(seed)
    noise = 0.1 * rng.randn(n_epochs, len(ch_names), n_times)
    t = np.arange(n_times, dtype=np.float) / sfreq
    signal = np.sin(np.pi * 2. * 50. * t)  # 50 Hz sinusoid signal
    signal[np.logical_or(t < 0.45, t > 0.55)] = 0.  # Hard windowing
    on_time = np.logical_and(t >= 0.45, t <= 0.55)
    signal[on_time] *= np.hanning(on_time.sum())  # Ramping
    dat = noise + signal

    reject = dict(grad=4000.)
    events = np.empty((n_epochs, 3), int)
    first_event_sample = 100
    event_id = dict(sin50hz=1)
    for k in range(n_epochs):
        events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz']

    epochs = EpochsArray(data=dat, info=info, events=events, event_id=event_id,
                         reject=reject)

    freqs = np.arange(35, 70, 5, dtype=np.float)

    power, itc = tfr_multitaper(epochs, freqs=freqs, n_cycles=freqs / 2.,
                                time_bandwidth=4.0)
    power2, itc2 = tfr_multitaper(epochs, freqs=freqs, n_cycles=freqs / 2.,
                                  time_bandwidth=4.0, decim=slice(0, 2))
    picks = np.arange(len(ch_names))
    power_picks, itc_picks = tfr_multitaper(epochs, freqs=freqs,
                                            n_cycles=freqs / 2.,
                                            time_bandwidth=4.0, picks=picks)
    power_epochs = tfr_multitaper(epochs, freqs=freqs,
                                  n_cycles=freqs / 2., time_bandwidth=4.0,
                                  return_itc=False, average=False)
    power_averaged = power_epochs.average()
    power_evoked = tfr_multitaper(epochs.average(), freqs=freqs,
                                  n_cycles=freqs / 2., time_bandwidth=4.0,
                                  return_itc=False, average=False).average()

    print(power_evoked)  # test repr for EpochsTFR

    # Test channel picking
    power_epochs_picked = power_epochs.copy().drop_channels(['SIM0002'])
    assert_equal(power_epochs_picked.data.shape, (3, 1, 7, 200))
    assert_equal(power_epochs_picked.ch_names, ['SIM0001'])

    pytest.raises(ValueError, tfr_multitaper, epochs,
                  freqs=freqs, n_cycles=freqs / 2.,
                  return_itc=True, average=False)

    # test picks argument
    assert_array_almost_equal(power.data, power_picks.data)
    assert_array_almost_equal(power.data, power_averaged.data)
    assert_array_almost_equal(power.times, power_epochs.times)
    assert_array_almost_equal(power.times, power_averaged.times)
    assert_equal(power.nave, power_averaged.nave)
    assert_equal(power_epochs.data.shape, (3, 2, 7, 200))
    assert_array_almost_equal(itc.data, itc_picks.data)
    # one is squared magnitude of the average (evoked) and
    # the other is average of the squared magnitudes (epochs PSD)
    # so values shouldn't match, but shapes should
    assert_array_equal(power.data.shape, power_evoked.data.shape)
    pytest.raises(AssertionError, assert_array_almost_equal,
                  power.data, power_evoked.data)

    tmax = t[np.argmax(itc.data[0, freqs == 50, :])]
    fmax = freqs[np.argmax(power.data[1, :, t == 0.5])]
    assert (tmax > 0.3 and tmax < 0.7)
    assert not np.any(itc.data < 0.)
    assert (fmax > 40 and fmax < 60)
    assert (power2.data.shape == (len(picks), len(freqs), 2))
    assert (power2.data.shape == itc2.data.shape)

    # Test decim parameter checks and compatibility between wavelets length
    # and instance length in the time dimension.
    pytest.raises(TypeError, tfr_multitaper, epochs, freqs=freqs,
                  n_cycles=freqs / 2., time_bandwidth=4.0, decim=(1,))
    pytest.raises(ValueError, tfr_multitaper, epochs, freqs=freqs,
                  n_cycles=1000, time_bandwidth=4.0)
data = noise + signal

reject = dict(grad=4000)
events = np.empty((n_epochs, 3), dtype=int)
first_event_sample = 100
event_id = dict(sin50hz=1)
for k in range(n_epochs):
    events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz']

epochs = EpochsArray(data=data,
                     info=info,
                     events=events,
                     event_id=event_id,
                     reject=reject)

epochs.average().plot()

# %%
# Calculate a time-frequency representation (TFR)
# -----------------------------------------------
#
# Below we'll demonstrate the output of several TFR functions in MNE:
#
# * :func:`mne.time_frequency.tfr_multitaper`
# * :func:`mne.time_frequency.tfr_stockwell`
# * :func:`mne.time_frequency.tfr_morlet`
#
# Multitaper transform
# ====================
# First we'll use the multitaper method for calculating the TFR.
# This creates several orthogonal tapering windows in the TFR estimation,
signal[np.logical_or(t < 0.45, t > 0.55)] = 0.  # Hard windowing
on_time = np.logical_and(t >= 0.45, t <= 0.55)
signal[on_time] *= np.hanning(on_time.sum())  # Ramping
data = noise + signal

reject = dict(grad=4000)
events = np.empty((n_epochs, 3), dtype=int)
first_event_sample = 100
event_id = dict(sin50hz=1)
for k in range(n_epochs):
    events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz']

epochs = EpochsArray(data=data, info=info, events=events, event_id=event_id,
                     reject=reject)

epochs.average().plot()

###############################################################################
# Calculate a time-frequency representation (TFR)
# -----------------------------------------------
#
# Below we'll demonstrate the output of several TFR functions in MNE:
#
# * :func:`mne.time_frequency.tfr_multitaper`
# * :func:`mne.time_frequency.tfr_stockwell`
# * :func:`mne.time_frequency.tfr_morlet`
#
# Multitaper transform
# ====================
# First we'll use the multitaper method for calculating the TFR.
# This creates several orthogonal tapering windows in the TFR estimation,