Beispiel #1
0
def main():
    HERE = os.path.dirname(__file__)

    # Import MNIST data
    sys.path.append(
        os.path.realpath(os.path.join(HERE, '..', '..', 'vision', 'mnist')))
    from mnist_data import data_iterator_mnist

    # Create binary output folder
    path_bin = os.path.join(HERE, "mnist_images")
    if not os.path.isdir(path_bin):
        os.makedirs(path_bin)

    # Get MNIST testing images.
    images, labels = data_iterator_mnist(10000, train=False,
                                         shuffle=True).next()

    # Dump image binary files with row-major order.
    for i in range(10):
        outfile = os.path.join(path_bin, "{}.pgm".format(i))
        print("Generator a binary file of number {} to {}".format(i, outfile))
        ind = np.where(labels == i)[0][0]
        image = images[ind].copy(order='C')
        with open(outfile, 'w') as fd:
            print('P5', file=fd)
            print('# Created by nnabla mnist_runtime example.', file=fd)
            print('28 28', file=fd)
            print('255', file=fd)
            image.tofile(fd)
def main():
    HERE = os.path.dirname(__file__)

    # Import MNIST data
    sys.path.append(
        os.path.realpath(os.path.join(HERE, '..', '..', 'vision', 'mnist')))
    from mnist_data import data_iterator_mnist

    # Create binary output folder
    path_bin = os.path.join(HERE, "mnist_images")
    if not os.path.isdir(path_bin):
        os.makedirs(path_bin)

    # Get MNIST testing images.
    images, labels = data_iterator_mnist(
        10000, train=False, shuffle=True).next()

    # Dump image binary files with row-major order.
    for i in range(10):
        outfile = os.path.join(path_bin, "{}.pgm".format(i))
        print("Generator a binary file of number {} to {}".format(i, outfile))
        ind = np.where(labels == i)[0][0]
        image = images[ind].copy(order='C')
        with open(outfile, 'w') as fd:
            print('P5', file=fd)
            print('# Created by nnabla mnist_runtime example.', file=fd)
            print('28 28', file=fd)
            print('255', file=fd)
            image.tofile(fd)
def test():
    print("Evaluate the trained model with full MNIST test set")

    args = get_args()

    # Create CNN network for both training and testing.
    mnist_cnn_prediction = mnist_lenet_prediction
    if args.net == 'resnet':
        mnist_cnn_prediction = mnist_resnet_prediction

    args.batch_size = 100
    tdata = data_iterator_mnist(args.batch_size, False)
    timage = nn.Variable([args.batch_size, 1, 28, 28])
    tlabel = nn.Variable([args.batch_size, 1])

    parameter_file = os.path.join(
        args.model_save_path,
        '{}_params_{:06}.h5'.format(args.net, args.max_iter))
    nn.load_parameters(parameter_file)

    # Create inference graph
    tpred = mnist_cnn_prediction(timage, test=True)
    num_test_iter = int((tdata.size + args.batch_size - 1) / args.batch_size)

    te = 0.0

    for j in range(num_test_iter):
        timage.d, tlabel.d = tdata.next()
        tpred.forward(clear_buffer=True)
        te += categorical_error(tpred.d, tlabel.d)

    te_avg = te / num_test_iter
    print("MNIST test accuracy", 1 - te_avg)
Beispiel #4
0
def main():
    # Context
    ctx = get_extension_context("cudnn", device_id="0")
    nn.set_default_context(ctx)
    nn.auto_forward(False)
    # Inputs
    b, c, h, w = 64, 1, 28, 28
    x = nn.Variable([b, c, h, w])
    t = nn.Variable([b, 1])
    vx = nn.Variable([b, c, h, w])
    vt = nn.Variable([b, 1])
    # Model
    model = Model()
    pred = model(x)
    loss = F.softmax_cross_entropy(pred, t)
    vpred = model(vx, test=True)
    verror = F.top_n_error(vpred, vt)
    # Solver
    solver = S.Adam()
    solver.set_parameters(model.get_parameters(grad_only=True))
    # Data Iterator
    tdi = data_iterator_mnist(b, train=True)
    vdi = data_iterator_mnist(b, train=False)
    # Monitor
    monitor = Monitor("tmp.monitor")
    monitor_loss = MonitorSeries("Training loss", monitor, interval=10)
    monitor_verr = MonitorSeries("Test error", monitor, interval=1)

    # Training loop
    for e in range(1):
        for j in range(tdi.size // b):
            i = e * tdi.size // b + j
            x.d, t.d = tdi.next()
            solver.zero_grad()
            loss.forward(clear_no_need_grad=True)
            loss.backward(clear_buffer=True)
            solver.update()
            monitor_loss.add(i, loss.d)
        error = 0.0
        for _ in range(vdi.size // b):
            vx.d, vt.d = vdi.next()
            verror.forward(clear_buffer=True)
            error += verror.d
        error /= vdi.size // b
        monitor_verr.add(i, error)
Beispiel #5
0
def mnist_iterator(config, comm, train=True):

    data_iterator_ = data_iterator_mnist(batch_size=config['train']['batch_size'], train=train, rng=np.random.RandomState(config['model']['rng']),
                                         with_memory_cache=config['dataset']['with_memory_cache'], with_file_cache=config['dataset']['with_file_cache'])
    if comm.n_procs > 1:
        data_iterator_ = data_iterator_.slice(
            rng=None, num_of_slices=comm.n_procs, slice_pos=comm.rank)

    return data_iterator_
Beispiel #6
0
def visualize(args):
    """
    Visualizing embedded digits onto 2D space.
    """
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

    batch_size = 500

    # Create default context.
    ctx = nn.Context(backend="cpu|cuda",
                     compute_backend="default|cudnn",
                     array_class="CudaArray",
                     device_id="{}".format(args.device_id))

    # Load parameters
    nn.load_parameters(
        os.path.join(args.model_save_path, 'params_%06d.h5' % args.max_iter))

    # Create embedder network
    image = nn.Variable([batch_size, 1, 28, 28])
    feature = mnist_lenet_feature(image, test=False)

    # Process all images
    features = []
    labels = []
    # Prepare MNIST data iterator

    rng = np.random.RandomState(313)
    data = data_iterator_mnist(batch_size, train=False, shuffle=True, rng=rng)
    for i in range(10000 // batch_size):
        image_data, label_data = data.next()
        image.d = image_data / 255.
        feature.forward(clear_buffer=True)
        features.append(feature.d.copy())
        labels.append(label_data.copy())
    features = np.vstack(features)
    labels = np.vstack(labels)

    # Visualize
    f = plt.figure(figsize=(16, 9))
    for i in range(10):
        c = plt.cm.Set1(i / 10.)
        plt.plot(features[labels.flat == i, 0].flatten(),
                 features[labels.flat == i, 1].flatten(),
                 '.',
                 c=c)
    plt.legend(map(str, range(10)))
    plt.grid()
    plt.savefig(os.path.join(args.monitor_path, "embed.png"))
Beispiel #7
0
def visualize(args):
    """
    Visualizing embedded digits onto 2D space.
    """
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

    batch_size = 500

    # Create default context.
    ctx = nn.Context(backend="cpu|cuda",
                     compute_backend="default|cudnn",
                     array_class="CudaArray",
                     device_id="{}".format(args.device_id))

    # Load parameters
    nn.load_parameters(os.path.join(args.model_save_path,
                                    'params_%06d.h5' % args.max_iter))

    # Create embedder network
    image = nn.Variable([batch_size, 1, 28, 28])
    feature = mnist_lenet_feature(image, test=False)

    # Process all images
    features = []
    labels = []
    # Prepare MNIST data iterator

    rng = np.random.RandomState(313)
    data = data_iterator_mnist(batch_size, train=False, shuffle=True, rng=rng)
    for i in range(10000 // batch_size):
        image_data, label_data = data.next()
        image.d = image_data / 255.
        feature.forward(clear_buffer=True)
        features.append(feature.d.copy())
        labels.append(label_data.copy())
    features = np.vstack(features)
    labels = np.vstack(labels)

    # Visualize
    f = plt.figure(figsize=(16, 9))
    for i in range(10):
        c = plt.cm.Set1(i / 10.)
        plt.plot(features[labels.flat == i, 0].flatten(), features[
                 labels.flat == i, 1].flatten(), '.', c=c)
    plt.legend(map(str, range(10)))
    plt.grid()
    plt.savefig(os.path.join(args.monitor_path, "embed.png"))
Beispiel #8
0
def train():
    args = get_args()

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    mnist_cnn_prediction = mnist_lenet_prediction

    # TRAIN
    reference = "reference"
    # Create input variables.
    image = nn.Variable([args.batch_size, 1, 28, 28])
    label = nn.Variable([args.batch_size, 1])
    # Create `reference` prediction graph.
    pred = mnist_cnn_prediction(image, scope=reference, test=False)
    pred.persistent = True
    # Create loss function.
    loss = F.mean(F.softmax_cross_entropy(pred, label))

    # TEST
    # Create input variables.
    vimage = nn.Variable([args.batch_size, 1, 28, 28])
    vlabel = nn.Variable([args.batch_size, 1])
    # Create reference predition graph.
    vpred = mnist_cnn_prediction(vimage, scope=reference, test=True)

    # Create Solver.
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Create monitor.
    from nnabla.monitor import Monitor, MonitorSeries, MonitorTimeElapsed
    monitor = Monitor(args.monitor_path)
    monitor_loss = MonitorSeries("Training loss", monitor, interval=10)
    monitor_err = MonitorSeries("Training error", monitor, interval=10)
    monitor_time = MonitorTimeElapsed("Training time", monitor, interval=100)
    monitor_verr = MonitorSeries("Test error", monitor, interval=10)

    # Initialize DataIterator for MNIST.
    data = data_iterator_mnist(args.batch_size, True)
    vdata = data_iterator_mnist(args.batch_size, False)
    best_ve = 1.0
    ve = 1.0
    # Training loop.
    for i in range(args.max_iter):
        if i % args.val_interval == 0:
            # Validation
            ve = 0.0
            for j in range(args.val_iter):
                vimage.d, vlabel.d = vdata.next()
                vpred.forward(clear_buffer=True)
                ve += categorical_error(vpred.d, vlabel.d)
            ve /= args.val_iter
            monitor_verr.add(i, ve)
        if ve < best_ve:
            nn.save_parameters(
                os.path.join(args.model_save_path, 'params_%06d.h5' % i))
            best_ve = ve
        # Training forward
        image.d, label.d = data.next()
        solver.zero_grad()
        loss.forward(clear_no_need_grad=True)
        loss.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()
        e = categorical_error(pred.d, label.d)
        monitor_loss.add(i, loss.d.copy())
        monitor_err.add(i, e)
        monitor_time.add(i)

    ve = 0.0
    for j in range(args.val_iter):
        vimage.d, vlabel.d = vdata.next()
        vpred.forward(clear_buffer=True)
        ve += categorical_error(vpred.d, vlabel.d)
    monitor_verr.add(i, ve / args.val_iter)

    parameter_file = os.path.join(args.model_save_path,
                                  'params_{:06}.h5'.format(args.max_iter))
    nn.save_parameters(parameter_file)
Beispiel #9
0
def main():
    """
    Main script.
    Steps:
    * Setup calculation environment
    * Initialize data iterator.
    * Create Networks
    * Create Solver.
    * Training Loop.
    *   Training
    *   Test
    * Save
    """

    # Set args
    args = get_args(monitor_path='tmp.monitor.vae',
                    max_iter=60000,
                    model_save_path=None,
                    learning_rate=3e-4,
                    batch_size=100,
                    weight_decay=0)

    # Get context.
    from nnabla.ext_utils import get_extension_context
    logger.info("Running in %s" % args.context)
    ctx = get_extension_context(args.context,
                                device_id=args.device_id,
                                type_config=args.type_config)
    nn.set_default_context(ctx)

    # Initialize data provider
    di_l = data_iterator_mnist(args.batch_size, True)
    di_t = data_iterator_mnist(args.batch_size, False)

    # Network
    shape_x = (1, 28, 28)
    shape_z = (50, )
    x = nn.Variable((args.batch_size, ) + shape_x)
    loss_l = vae(x, shape_z, test=False)
    loss_t = vae(x, shape_z, test=True)

    # Create solver
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Monitors for training and validation
    monitor = M.Monitor(args.model_save_path)
    monitor_training_loss = M.MonitorSeries("Training loss",
                                            monitor,
                                            interval=600)
    monitor_test_loss = M.MonitorSeries("Test loss", monitor, interval=600)
    monitor_time = M.MonitorTimeElapsed("Elapsed time", monitor, interval=600)

    # Training Loop.
    for i in range(args.max_iter):

        # Initialize gradients
        solver.zero_grad()

        # Forward, backward and update
        x.d, _ = di_l.next()
        loss_l.forward(clear_no_need_grad=True)
        loss_l.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()

        # Forward for test
        x.d, _ = di_t.next()
        loss_t.forward(clear_no_need_grad=True)

        # Monitor for logging
        monitor_training_loss.add(i, loss_l.d.copy())
        monitor_test_loss.add(i, loss_t.d.copy())
        monitor_time.add(i)

    # Save the model
    nn.save_parameters(
        os.path.join(args.model_save_path, 'params_%06d.h5' % args.max_iter))
Beispiel #10
0
def siamese_data_iterator(batch_size, train, rng=None):
    itr0 = data_iterator_mnist(batch_size, train=train, shuffle=True, rng=rng)
    itr1 = data_iterator_mnist(batch_size, train=train, shuffle=True, rng=rng)
    return MnistSiameseDataIterator(itr0, itr1)
Beispiel #11
0
def siamese_data_iterator(batch_size, train, rng=None):
    itr0 = data_iterator_mnist(batch_size, train=train, rng=rng, shuffle=True)
    itr1 = data_iterator_mnist(batch_size, train=train, rng=rng, shuffle=True)
    return MnistSiameseDataIterator(itr0, itr1)
Beispiel #12
0
def distil():
    args = get_args()

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    mnist_cnn_prediction = mnist_resnet_prediction

    # TRAIN
    teacher = "teacher"
    student = "student"
    # Create input variables.
    image = nn.Variable([args.batch_size, 1, 28, 28])
    image.persistent = True  # not clear the intermediate buffer re-used
    label = nn.Variable([args.batch_size, 1])
    label.persistent = True  # not clear the intermediate buffer re-used
    # Create `teacher` and "student" prediction graph.
    model_load_path = args.model_load_path
    nn.load_parameters(model_load_path)
    pred_label = mnist_cnn_prediction(image, net=teacher, maps=64, test=False)
    pred_label.need_grad = False  # no need backward through teacher graph
    pred = mnist_cnn_prediction(image, net=student, maps=32, test=False)
    pred.persistent = True  # not clear the intermediate buffer used
    loss_ce = F.mean(F.softmax_cross_entropy(pred, label))
    loss_kl = kl_divergence(pred, pred_label)
    loss = args.weight_ce * loss_ce + args.weight_kl * loss_kl

    # TEST
    # Create input variables.
    vimage = nn.Variable([args.batch_size, 1, 28, 28])
    vlabel = nn.Variable([args.batch_size, 1])
    # Create teacher predition graph.
    vpred = mnist_cnn_prediction(vimage, net=student, maps=32, test=True)

    # Create Solver.
    solver = S.Adam(args.learning_rate)
    with nn.parameter_scope(student):
        solver.set_parameters(nn.get_parameters())
    
    # Create monitor.
    from nnabla.monitor import Monitor, MonitorSeries, MonitorTimeElapsed
    monitor = Monitor(args.monitor_path)
    monitor_loss = MonitorSeries("Training loss", monitor, interval=10)
    monitor_err = MonitorSeries("Training error", monitor, interval=10)
    monitor_time = MonitorTimeElapsed("Training time", monitor, interval=100)
    monitor_verr = MonitorSeries("Test error", monitor, interval=10)

    # Initialize DataIterator for MNIST.
    data = data_iterator_mnist(args.batch_size, True)
    vdata = data_iterator_mnist(args.batch_size, False)
    best_ve = 1.0
    # Training loop.
    for i in range(args.max_iter):
        if i % args.val_interval == 0:
            # Validation
            ve = 0.0
            for j in range(args.val_iter):
                vimage.d, vlabel.d = vdata.next()
                vpred.forward(clear_buffer=True)
                ve += categorical_error(vpred.d, vlabel.d)
            monitor_verr.add(i, ve / args.val_iter)
        if ve < best_ve:
            nn.save_parameters(os.path.join(
                args.model_save_path, 'params_%06d.h5' % i))
            best_ve = ve
        # Training forward
        image.d, label.d = data.next()
        solver.zero_grad()
        loss.forward(clear_no_need_grad=True)
        loss.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()
        e = categorical_error(pred.d, label.d)
        monitor_loss.add(i, loss.d.copy())
        monitor_err.add(i, e)
        monitor_time.add(i)

    ve = 0.0
    for j in range(args.val_iter):
        vimage.d, vlabel.d = vdata.next()
        vpred.forward(clear_buffer=True)
        ve += categorical_error(vpred.d, vlabel.d)
    monitor_verr.add(i, ve / args.val_iter)

    parameter_file = os.path.join(
        args.model_save_path, 'params_{:06}.h5'.format(args.max_iter))
    nn.save_parameters(parameter_file)
Beispiel #13
0
    logger.debug('output: {}'.format(args.output))
    logger.debug('normalize: {}'.format(args.normalize))
    logger.debug('max_epoch: {}'.format(args.max_epoch))
    logger.debug('wait: {}'.format(args.wait))

    nnabla_config.set('DATA_ITERATOR', 'data_source_file_cache_size',
                      '{}'.format(args.cache_size))
    nnabla_config.set('DATA_ITERATOR', 'data_source_buffer_max_size',
                      '{}'.format(args.memory_size))

    if args.uri == 'MNIST_TRAIN':
        sys.path.append(
            os.path.join(os.path.dirname(os.path.abspath(__file__)), '..',
                         'vision', 'mnist'))
        from mnist_data import data_iterator_mnist
        with data_iterator_mnist(args.batch_size, True, None, args.shuffle,
                                 args.memory_cache, args.file_cache) as di:
            test_data_iterator(di, args)
    elif args.uri == 'MNIST_TEST':
        sys.path.append(
            os.path.join(os.path.dirname(os.path.abspath(__file__)), '..',
                         'vision', 'mnist'))
        from mnist_data import data_iterator_mnist
        with data_iterator_mnist(args.batch_size, False, None, args.shuffle,
                                 args.memory_cache, args.file_cache) as di:
            test_data_iterator(di, args)
    elif args.uri == 'TINY_IMAGENET_TRAIN':
        sys.path.append(
            os.path.join(os.path.dirname(os.path.abspath(__file__)), '..',
                         'vision', 'imagenet'))
        from tiny_imagenet_data import data_iterator_tiny_imagenet
        with data_iterator_tiny_imagenet(args.batch_size, 'train') as di:
Beispiel #14
0
def train(max_iter=24000):
    shape_x = (1, 28, 28)
    n_h = args.n_units
    n_y = args.n_class

    # Load MNIST Dataset
    from mnist_data import load_mnist, data_iterator_mnist

    images, labels = load_mnist(train=True)
    rng = np.random.RandomState(706)
    inds = rng.permutation(len(images))

    def feed_labeled(i):
        j = inds[i]
        return images[j], labels[j]

    def feed_unlabeled(i):
        j = inds[i]
        return images[j], labels[j]

    di_l = I.data_iterator_simple(
        feed_labeled,
        args.n_labeled,
        args.batchsize_l,
        shuffle=True,
        rng=rng,
        with_file_cache=False,
    )
    di_u = I.data_iterator_simple(
        feed_unlabeled,
        args.n_train,
        args.batchsize_u,
        shuffle=True,
        rng=rng,
        with_file_cache=False,
    )
    di_v = data_iterator_mnist(args.batchsize_v, train=False)

    # Create networks
    # feed-forward-net building function
    def forward(x, test=False):
        return I.mlp_net(x, n_h, n_y, test)

    # Net for learning labeled data
    xl = nn.Variable((args.batchsize_l,) + shape_x, need_grad=False)
    yl = forward(xl, test=False)
    tl = nn.Variable((args.batchsize_l, 1), need_grad=False)
    loss_l = F.mean(F.softmax_cross_entropy(yl, tl))

    # Net for learning unlabeled data
    xu = nn.Variable((args.batchsize_u,) + shape_x, need_grad=False)
    yu = forward(xu, test=False)
    y1 = yu.get_unlinked_variable()
    y1.need_grad = False

    noise = nn.Variable((args.batchsize_u,) + shape_x, need_grad=True)
    r = noise / (F.sum(noise ** 2, [1, 2, 3], keepdims=True)) ** 0.5
    r.persistent = True
    y2 = forward(xu + args.xi_for_vat * r, test=False)
    y3 = forward(xu + args.eps_for_vat * r, test=False)
    loss_k = F.mean(I.distance(y1, y2))
    loss_u = F.mean(I.distance(y1, y3))

    # Net for evaluating validation data
    xv = nn.Variable((args.batchsize_v,) + shape_x, need_grad=False)
    hv = forward(xv, test=True)
    tv = nn.Variable((args.batchsize_v, 1), need_grad=False)
    err = F.mean(F.top_n_error(hv, tv, n=1))

    # Create solver
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Monitor training and validation stats.
    path = cache_dir(os.path.join(I.name, "monitor"))
    monitor = M.Monitor(path)
    monitor_verr = M.MonitorSeries("val_error", monitor, interval=240)
    monitor_time = M.MonitorTimeElapsed("time", monitor, interval=240)

    # Training Loop.
    for i in range(max_iter):

        # Validation Test
        if i % args.val_interval == 0:
            valid_error = I.calc_validation_error(di_v, xv, tv, err, args.val_iter)
            monitor_verr.add(i, valid_error)

        # forward, backward and update
        xl.d, tl.d = di_l.next()
        xl.d = xl.d / 255
        solver.zero_grad()
        loss_l.forward(clear_no_need_grad=True)
        loss_l.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()

        # Calculate y without noise, only once.
        xu.d, _ = di_u.next()
        xu.d = xu.d / 255
        yu.forward(clear_buffer=True)

        # Do power method iteration
        noise.d = np.random.normal(size=xu.shape).astype(np.float32)
        for k in range(args.n_iter_for_power_method):
            r.grad.zero()
            loss_k.forward(clear_no_need_grad=True)
            loss_k.backward(clear_buffer=True)
            noise.data.copy_from(r.grad)

        # forward, backward and update
        solver.zero_grad()
        loss_u.forward(clear_no_need_grad=True)
        loss_u.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()

        if i % args.iter_per_epoch == 0:
            solver.set_learning_rate(solver.learning_rate() * args.learning_rate_decay)
        monitor_time.add(i)

    # Evaluate the final model by the error rate with validation dataset
    valid_error = I.calc_validation_error(di_v, xv, tv, err, args.val_iter)
    monitor_verr.add(i, valid_error)
    monitor_time.add(i)

    return path
Beispiel #15
0
def train(args):
    """
    Main script.
    """

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    # TRAIN

    # Fake path
    z = nn.Variable([args.batch_size, 100, 1, 1])
    zeros = nn.Variable([args.batch_size, 1])
    zeros.data.zero()
    ones = nn.Variable([args.batch_size, 1])
    ones.data.fill(1)
    fake = generator(z)
    fake.persistent = True  # Not to clear at backward
    pred_fake = discriminator(fake)
    loss_gen = F.mean(F.sigmoid_cross_entropy(pred_fake, ones))
    loss_dis = F.mean(F.sigmoid_cross_entropy(pred_fake, zeros))

    # Real path
    x = nn.Variable([args.batch_size, 1, 28, 28])
    pred_real = discriminator(x)
    loss_dis += F.mean(F.sigmoid_cross_entropy(pred_real, ones))

    # Create Solver.
    solver_gen = S.Adam(args.learning_rate, beta1=0.5)
    solver_dis = S.Adam(args.learning_rate, beta1=0.5)
    with nn.parameter_scope("gen"):
        solver_gen.set_parameters(nn.get_parameters())
    with nn.parameter_scope("dis"):
        solver_dis.set_parameters(nn.get_parameters())

    # Create monitor.
    import nnabla.monitor as M
    monitor = M.Monitor(args.monitor_path)
    monitor_loss_gen = M.MonitorSeries("Generator loss", monitor, interval=10)
    monitor_loss_dis = M.MonitorSeries("Discriminator loss",
                                       monitor,
                                       interval=10)
    monitor_time = M.MonitorTimeElapsed("Time", monitor, interval=100)
    monitor_fake = M.MonitorImageTile("Fake images",
                                      monitor,
                                      normalize_method=lambda x: x + 1 / 2.)

    data = data_iterator_mnist(args.batch_size, True)
    # Training loop.
    for i in range(args.max_iter):
        if i % args.model_save_interval == 0:
            with nn.parameter_scope("gen"):
                nn.save_parameters(
                    os.path.join(args.model_save_path,
                                 "generator_param_%06d.h5" % i))
            with nn.parameter_scope("dis"):
                nn.save_parameters(
                    os.path.join(args.model_save_path,
                                 "discriminator_param_%06d.h5" % i))

        # Training forward
        image, _ = data.next()
        x.d = image / 255. - 0.5  # [0, 255] to [-1, 1]
        z.d = np.random.randn(*z.shape)

        # Generator update.
        solver_gen.zero_grad()
        loss_gen.forward(clear_no_need_grad=True)
        loss_gen.backward(clear_buffer=True)
        solver_gen.weight_decay(args.weight_decay)
        solver_gen.update()
        monitor_fake.add(i, fake)
        monitor_loss_gen.add(i, loss_gen.d.copy())

        # Discriminator update.
        solver_dis.zero_grad()
        loss_dis.forward(clear_no_need_grad=True)
        loss_dis.backward(clear_buffer=True)
        solver_dis.weight_decay(args.weight_decay)
        solver_dis.update()
        monitor_loss_dis.add(i, loss_dis.d.copy())
        monitor_time.add(i)
    with nn.parameter_scope("gen"):
        nn.save_parameters(
            os.path.join(args.model_save_path,
                         "generator_param_%06d.h5" % args.max_iter))
    with nn.parameter_scope("dis"):
        nn.save_parameters(
            os.path.join(args.model_save_path,
                         "discriminator_param_%06d.h5" % args.max_iter))
Beispiel #16
0
def train():
    """
    Main script.

    Steps:

    * Parse command line arguments.
    * Specify a context for computation.
    * Initialize DataIterator for MNIST.
    * Construct a computation graph for training and validation.
    * Initialize a solver and set parameter variables to it.
    * Create monitor instances for saving and displaying training stats.
    * Training loop
      * Computate error rate for validation data (periodically)
      * Get a next minibatch.
      * Execute forwardprop on the training graph.
      * Compute training error
      * Set parameter gradients zero
      * Execute backprop.
      * Solver updates parameters by using gradients computed by backprop.
    """
    args = get_args()

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    mnist_cnn_prediction = mnist_lenet_prediction
    if args.net == 'resnet':
        mnist_cnn_prediction = mnist_resnet_prediction

    # TRAIN
    # Create input variables.
    image = nn.Variable([args.batch_size, 1, 28, 28])
    label = nn.Variable([args.batch_size, 1])
    # Create prediction graph.
    pred = mnist_cnn_prediction(image, test=False)
    pred.persistent = True
    # Create loss function.
    loss = F.mean(F.softmax_cross_entropy(pred, label))

    # TEST
    # Create input variables.
    vimage = nn.Variable([args.batch_size, 1, 28, 28])
    vlabel = nn.Variable([args.batch_size, 1])
    # Create predition graph.
    vpred = mnist_cnn_prediction(vimage, test=True)

    # Create Solver.
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Create monitor.
    from nnabla.monitor import Monitor, MonitorSeries, MonitorTimeElapsed
    monitor = Monitor(args.monitor_path)
    monitor_loss = MonitorSeries("Training loss", monitor, interval=10)
    monitor_err = MonitorSeries("Training error", monitor, interval=10)
    monitor_time = MonitorTimeElapsed("Training time", monitor, interval=100)
    monitor_verr = MonitorSeries("Test error", monitor, interval=10)

    # Initialize DataIterator for MNIST.
    data = data_iterator_mnist(args.batch_size, True)
    vdata = data_iterator_mnist(args.batch_size, False)
    # Training loop.
    for i in range(args.max_iter):
        if i % args.val_interval == 0:
            # Validation
            ve = 0.0
            for j in range(args.val_iter):
                vimage.d, vlabel.d = vdata.next()
                vpred.forward(clear_buffer=True)
                ve += categorical_error(vpred.d, vlabel.d)
            monitor_verr.add(i, ve / args.val_iter)
        if i % args.model_save_interval == 0:
            nn.save_parameters(os.path.join(
                args.model_save_path, 'params_%06d.h5' % i))
        # Training forward
        image.d, label.d = data.next()
        solver.zero_grad()
        loss.forward(clear_no_need_grad=True)
        loss.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()
        e = categorical_error(pred.d, label.d)
        monitor_loss.add(i, loss.d.copy())
        monitor_err.add(i, e)
        monitor_time.add(i)

    ve = 0.0
    for j in range(args.val_iter):
        vimage.d, vlabel.d = vdata.next()
        vpred.forward(clear_buffer=True)
        ve += categorical_error(vpred.d, vlabel.d)
    monitor_verr.add(i, ve / args.val_iter)

    parameter_file = os.path.join(
        args.model_save_path, '{}_params_{:06}.h5'.format(args.net, args.max_iter))
    nn.save_parameters(parameter_file)
Beispiel #17
0
def train():
    args = get_args()

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Train
    image = nn.Variable([args.batch_size, 1, 28, 28])
    label = nn.Variable([args.batch_size, 1])
    h_d, h_copy, pred, g_pred, g_label = cnn_dni(image, y=label)
    loss_ce = ce_loss(pred, label)  # loss of a problem at hand
    loss_se = se_loss(g_pred, g_label)  # gradient synthesizer loss

    # Test
    vimage = nn.Variable([args.batch_size, 1, 28, 28])
    vlabel = nn.Variable([args.batch_size, 1])
    vpred = cnn(vimage, test=True)

    # Solver
    solver = S.Adam(args.learning_rate)
    with nn.parameter_scope("ref"):
        solver.set_parameters(nn.get_parameters())
    solver_gs = S.Adam(args.learning_rate)
    with nn.parameter_scope("gs"):
        solver_gs.set_parameters(nn.get_parameters())

    # Monitor
    from nnabla.monitor import Monitor, MonitorSeries, MonitorTimeElapsed
    monitor = Monitor(args.monitor_path)
    monitor_loss = MonitorSeries("Training loss", monitor, interval=10)
    monitor_err = MonitorSeries("Training error", monitor, interval=10)
    monitor_time = MonitorTimeElapsed("Training time", monitor, interval=100)
    monitor_verr = MonitorSeries("Test error", monitor, interval=10)

    # DataIterator
    data = data_iterator_mnist(args.batch_size, True)
    vdata = data_iterator_mnist(args.batch_size, False)

    # Training loop
    for i in range(args.max_iter):
        if i % args.val_interval == 0:
            # Validation
            ve = 0.0
            for j in range(args.val_iter):
                vimage.d, vlabel.d = vdata.next()
                vpred.forward(clear_buffer=False)
                ve += categorical_error(vpred.d, vlabel.d)
            monitor_verr.add(i, ve / args.val_iter)
        if i % args.model_save_interval == 0:
            nn.save_parameters(
                os.path.join(args.model_save_path, 'params_%06d.h5' % i))

        # Training
        image.d, label.d = data.next()
        solver.zero_grad()
        solver_gs.zero_grad()

        ## forward
        h_d.forward(clear_no_need_grad=False)
        loss_ce.forward(clear_no_need_grad=False)
        loss_se.forward(clear_no_need_grad=False)

        ## backward
        loss_ce.backward(clear_buffer=False)
        h_d.backward(clear_buffer=False)
        loss_se.backward(clear_buffer=False)

        ## update
        solver.weight_decay(args.weight_decay)
        solver.update()
        solver_gs.weight_decay(args.weight_decay)
        solver_gs.update()

        ## monitor
        e = categorical_error(pred.d, label.d)
        monitor_loss.add(i, loss_ce.d.copy())
        monitor_err.add(i, e)
        monitor_time.add(i)

    nn.save_parameters(
        os.path.join(args.model_save_path, 'params_%06d.h5' % args.max_iter))
Beispiel #18
0
def train(args):
    """
    Main script.
    """

    # Get context.
    from nnabla.ext_utils import get_extension_context
    logger.info("Running in %s" % args.context)
    ctx = get_extension_context(args.context,
                                device_id=args.device_id,
                                type_config=args.type_config)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    # TRAIN

    # Fake path
    z = nn.Variable([args.batch_size, 100, 1, 1])
    fake = generator(z)
    fake.persistent = True  # Not to clear at backward
    pred_fake = discriminator(fake)
    loss_gen = F.mean(
        F.sigmoid_cross_entropy(pred_fake, F.constant(1, pred_fake.shape)))
    fake_dis = fake.get_unlinked_variable(need_grad=True)
    fake_dis.need_grad = True  # TODO: Workaround until v1.0.2
    pred_fake_dis = discriminator(fake_dis)
    loss_dis = F.mean(
        F.sigmoid_cross_entropy(pred_fake_dis,
                                F.constant(0, pred_fake_dis.shape)))

    # Real path
    x = nn.Variable([args.batch_size, 1, 28, 28])
    pred_real = discriminator(x)
    loss_dis += F.mean(
        F.sigmoid_cross_entropy(pred_real, F.constant(1, pred_real.shape)))

    # Create Solver.
    solver_gen = S.Adam(args.learning_rate, beta1=0.5)
    solver_dis = S.Adam(args.learning_rate, beta1=0.5)
    with nn.parameter_scope("gen"):
        solver_gen.set_parameters(nn.get_parameters())
    with nn.parameter_scope("dis"):
        solver_dis.set_parameters(nn.get_parameters())
    start_point = 0

    if args.checkpoint is not None:
        # load weights and solver state info from specified checkpoint files.
        start_point = load_checkpoint(args.checkpoint, {
            "gen": solver_gen,
            "dis": solver_dis
        })

    # Create monitor.
    import nnabla.monitor as M
    monitor = M.Monitor(args.monitor_path)
    monitor_loss_gen = M.MonitorSeries("Generator loss", monitor, interval=10)
    monitor_loss_dis = M.MonitorSeries("Discriminator loss",
                                       monitor,
                                       interval=10)
    monitor_time = M.MonitorTimeElapsed("Time", monitor, interval=100)
    monitor_fake = M.MonitorImageTile("Fake images",
                                      monitor,
                                      normalize_method=lambda x: (x + 1) / 2.)

    data = data_iterator_mnist(args.batch_size, True)

    # Save_nnp
    contents = save_nnp({'x': z}, {'y': fake}, args.batch_size)
    save.save(
        os.path.join(args.model_save_path, 'Generator_result_epoch0.nnp'),
        contents)
    contents = save_nnp({'x': x}, {'y': pred_real}, args.batch_size)
    save.save(
        os.path.join(args.model_save_path, 'Discriminator_result_epoch0.nnp'),
        contents)

    # Training loop.
    for i in range(start_point, args.max_iter):
        if i % args.model_save_interval == 0:
            save_checkpoint(args.model_save_path, i, {
                "gen": solver_gen,
                "dis": solver_dis
            })

        # Training forward
        image, _ = data.next()
        x.d = image / 255. - 0.5  # [0, 255] to [-1, 1]
        z.d = np.random.randn(*z.shape)

        # Generator update.
        solver_gen.zero_grad()
        loss_gen.forward(clear_no_need_grad=True)
        loss_gen.backward(clear_buffer=True)
        solver_gen.weight_decay(args.weight_decay)
        solver_gen.update()
        monitor_fake.add(i, fake)
        monitor_loss_gen.add(i, loss_gen.d.copy())

        # Discriminator update.
        solver_dis.zero_grad()
        loss_dis.forward(clear_no_need_grad=True)
        loss_dis.backward(clear_buffer=True)
        solver_dis.weight_decay(args.weight_decay)
        solver_dis.update()
        monitor_loss_dis.add(i, loss_dis.d.copy())
        monitor_time.add(i)

    with nn.parameter_scope("gen"):
        nn.save_parameters(
            os.path.join(args.model_save_path, "generator_param_%06d.h5" % i))
    with nn.parameter_scope("dis"):
        nn.save_parameters(
            os.path.join(args.model_save_path,
                         "discriminator_param_%06d.h5" % i))

    # Save_nnp
    contents = save_nnp({'x': z}, {'y': fake}, args.batch_size)
    save.save(os.path.join(args.model_save_path, 'Generator_result.nnp'),
              contents)
    contents = save_nnp({'x': x}, {'y': pred_real}, args.batch_size)
    save.save(os.path.join(args.model_save_path, 'Discriminator_result.nnp'),
              contents)
Beispiel #19
0
def train(args):
    """
    Main script.
    """

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    # TRAIN

    # Fake path
    z = nn.Variable([args.batch_size, 100, 1, 1])
    fake = generator(z)
    fake.persistent = True  # Not to clear at backward
    pred_fake = discriminator(fake)
    loss_gen = F.mean(F.sigmoid_cross_entropy(
        pred_fake, F.constant(1, pred_fake.shape)))
    fake_dis = fake.unlinked()
    pred_fake_dis = discriminator(fake_dis)
    loss_dis = F.mean(F.sigmoid_cross_entropy(
        pred_fake_dis, F.constant(0, pred_fake_dis.shape)))

    # Real path
    x = nn.Variable([args.batch_size, 1, 28, 28])
    pred_real = discriminator(x)
    loss_dis += F.mean(F.sigmoid_cross_entropy(pred_real,
                                               F.constant(1, pred_real.shape)))

    # Create Solver.
    solver_gen = S.Adam(args.learning_rate, beta1=0.5)
    solver_dis = S.Adam(args.learning_rate, beta1=0.5)
    with nn.parameter_scope("gen"):
        solver_gen.set_parameters(nn.get_parameters())
    with nn.parameter_scope("dis"):
        solver_dis.set_parameters(nn.get_parameters())

    # Create monitor.
    import nnabla.monitor as M
    monitor = M.Monitor(args.monitor_path)
    monitor_loss_gen = M.MonitorSeries("Generator loss", monitor, interval=10)
    monitor_loss_dis = M.MonitorSeries(
        "Discriminator loss", monitor, interval=10)
    monitor_time = M.MonitorTimeElapsed("Time", monitor, interval=100)
    monitor_fake = M.MonitorImageTile(
        "Fake images", monitor, normalize_method=lambda x: x + 1 / 2.)

    data = data_iterator_mnist(args.batch_size, True)
    # Training loop.
    for i in range(args.max_iter):
        if i % args.model_save_interval == 0:
            with nn.parameter_scope("gen"):
                nn.save_parameters(os.path.join(
                    args.model_save_path, "generator_param_%06d.h5" % i))
            with nn.parameter_scope("dis"):
                nn.save_parameters(os.path.join(
                    args.model_save_path, "discriminator_param_%06d.h5" % i))

        # Training forward
        image, _ = data.next()
        x.d = image / 255. - 0.5  # [0, 255] to [-1, 1]
        z.d = np.random.randn(*z.shape)

        # Generator update.
        solver_gen.zero_grad()
        loss_gen.forward(clear_no_need_grad=True)
        loss_gen.backward(clear_buffer=True)
        solver_gen.weight_decay(args.weight_decay)
        solver_gen.update()
        monitor_fake.add(i, fake)
        monitor_loss_gen.add(i, loss_gen.d.copy())

        # Discriminator update.
        solver_dis.zero_grad()
        loss_dis.forward(clear_no_need_grad=True)
        loss_dis.backward(clear_buffer=True)
        solver_dis.weight_decay(args.weight_decay)
        solver_dis.update()
        monitor_loss_dis.add(i, loss_dis.d.copy())
        monitor_time.add(i)

    nnp = os.path.join(
        args.model_save_path, 'dcgan_%06d.nnp' % args.max_iter)
    runtime_contents = {
        'networks': [
            {'name': 'Generator',
             'batch_size': args.batch_size,
             'outputs': {'G': fake},
             'names': {'z': z}},
            {'name': 'Discriminator',
             'batch_size': args.batch_size,
             'outputs': {'D': pred_real},
             'names': {'x': x}}],
        'executors': [
            {'name': 'Generator',
             'network': 'Generator',
             'data': ['z'],
             'output': ['G']},
            {'name': 'Discriminator',
             'network': 'Discriminator',
             'data': ['x'],
             'output': ['D']}]}

    save.save(nnp, runtime_contents)
    from cpp_forward_check import check_cpp_forward
    check_cpp_forward(args.model_save_path, [z.d], [z], fake, nnp, "Generator")
Beispiel #20
0
def train():
    """
    Main script.

    Steps:

    * Parse command line arguments.
    * Specify a context for computation.
    * Initialize DataIterator for MNIST.
    * Construct a computation graph for training and validation.
    * Initialize a solver and set parameter variables to it.
    * Create monitor instances for saving and displaying training stats.
    * Training loop
      * Computate error rate for validation data (periodically)
      * Get a next minibatch.
      * Execute forwardprop on the training graph.
      * Compute training error
      * Set parameter gradients zero
      * Execute backprop.
      * Solver updates parameters by using gradients computed by backprop.
    """
    args = get_args()

    from numpy.random import seed
    seed(0)

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    if args.net == 'lenet':
        mnist_cnn_prediction = mnist_lenet_prediction
    elif args.net == 'resnet':
        mnist_cnn_prediction = mnist_resnet_prediction
    else:
        raise ValueError("Unknown network type {}".format(args.net))

    # TRAIN
    # Create input variables.
    image = nn.Variable([args.batch_size, 1, 28, 28])
    label = nn.Variable([args.batch_size, 1])
    # Create prediction graph.
    pred = mnist_cnn_prediction(image, test=False, aug=args.augment_train)
    pred.persistent = True
    # Create loss function.
    loss = F.mean(F.softmax_cross_entropy(pred, label))

    # TEST
    # Create input variables.
    vimage = nn.Variable([args.batch_size, 1, 28, 28])
    vlabel = nn.Variable([args.batch_size, 1])
    # Create predition graph.
    vpred = mnist_cnn_prediction(vimage, test=True, aug=args.augment_test)

    # Create Solver.
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Create monitor.
    from nnabla.monitor import Monitor, MonitorSeries, MonitorTimeElapsed
    monitor = Monitor(args.monitor_path)
    monitor_loss = MonitorSeries("Training loss", monitor, interval=10)
    monitor_err = MonitorSeries("Training error", monitor, interval=10)
    monitor_time = MonitorTimeElapsed("Training time", monitor, interval=100)
    monitor_verr = MonitorSeries("Test error", monitor, interval=10)

    # Initialize DataIterator for MNIST.
    from numpy.random import RandomState
    data = data_iterator_mnist(args.batch_size, True, rng=RandomState(1223))
    vdata = data_iterator_mnist(args.batch_size, False)
    # Training loop.
    for i in range(args.max_iter):
        if i % args.val_interval == 0:
            # Validation
            ve = 0.0
            for j in range(args.val_iter):
                vimage.d, vlabel.d = vdata.next()
                vpred.forward(clear_buffer=True)
                ve += categorical_error(vpred.d, vlabel.d)
            monitor_verr.add(i, ve / args.val_iter)
        if i % args.model_save_interval == 0:
            nn.save_parameters(
                os.path.join(args.model_save_path, 'params_%06d.h5' % i))
        # Training forward
        image.d, label.d = data.next()
        solver.zero_grad()
        loss.forward(clear_no_need_grad=True)
        loss.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()
        e = categorical_error(pred.d, label.d)
        monitor_loss.add(i, loss.d.copy())
        monitor_err.add(i, e)
        monitor_time.add(i)

    ve = 0.0
    for j in range(args.val_iter):
        vimage.d, vlabel.d = vdata.next()
        vpred.forward(clear_buffer=True)
        ve += categorical_error(vpred.d, vlabel.d)
    monitor_verr.add(i, ve / args.val_iter)

    parameter_file = os.path.join(
        args.model_save_path,
        '{}_params_{:06}.h5'.format(args.net, args.max_iter))
    nn.save_parameters(parameter_file)
from nnabla.contrib.context import extension_context

from mnist_data import data_iterator_mnist


def mlp(image, test=False):
    image /= 255.0
    h = F.relu(PF.affine(image, 1000, name='l1'), inplace=True)
    h = F.relu(PF.affine(h, 1000, name='l2'), inplace=True)
    h = PF.affine(h, 10, name='l3')
    return F.softmax(h)


# Get context.
ctx = extension_context('cpu', device_id=0)
nn.set_default_context(ctx)

# Create CNN network for both training and testing.
mnist_cnn_prediction = mlp

# Create input variables.
vimage = nn.Variable([1, 1, 28, 28])
vpred = mnist_cnn_prediction(vimage, test=True)

# Initialize DataIterator for MNIST.
vdata = data_iterator_mnist(1, False)

for j in tqdm.tqdm(range(vdata.size)):
    vimage.d, _ = vdata.next()
    vpred.forward(clear_buffer=True)
def infer():
    """
    Main script.

    Steps:

    * Parse command line arguments.
    * Specify a context for computation.
    * Initialize DataIterator for MNIST.
    * Construct a computation graph for inference.
    * Load parameter variables to infer.
    * Create monitor instances for saving and displaying infering stats.
    """
    args = get_args()

    from numpy.random import seed
    seed(0)

    # Get context.
    from nnabla.ext_utils import get_extension_context
    logger.info("Running in %s" % args.context)
    ctx = get_extension_context(args.context,
                                device_id=args.device_id,
                                type_config=args.type_config)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    if args.net == 'lenet':
        mnist_cnn_prediction = mnist_lenet_prediction
    elif args.net == 'resnet':
        mnist_cnn_prediction = mnist_resnet_prediction
    else:
        raise ValueError("Unknown network type {}".format(args.net))

    # TEST
    # Create input variables.
    vimage = nn.Variable([args.batch_size, 1, 28, 28])
    vlabel = nn.Variable([args.batch_size, 1])
    # Create prediction graph.
    vpred = mnist_cnn_prediction(vimage, test=True, aug=args.augment_test)

    # Create Solver.
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Create monitor.
    from nnabla.monitor import Monitor, MonitorSeries, MonitorTimeElapsed
    monitor = Monitor(args.monitor_path)
    monitor_loss = MonitorSeries("Training loss", monitor, interval=10)
    monitor_err = MonitorSeries("Training error", monitor, interval=10)
    monitor_time = MonitorTimeElapsed("Training time", monitor, interval=100)
    monitor_verr = MonitorSeries("Test error", monitor, interval=10)

    # Initialize DataIterator for MNIST.
    from numpy.random import RandomState
    data = data_iterator_mnist(args.batch_size, True, rng=RandomState(1223))
    vdata = data_iterator_mnist(1, False)

    from nnabla.utils.nnp_graph import NnpLoader

    # Read a .nnp file.
    nnp = NnpLoader(args.pretrained)
    # Assume a graph `graph_a` is in the nnp file.
    net = nnp.get_network(nnp.get_network_names()[0], batch_size=1)
    # `x` is an input of the graph.
    x = net.inputs['x']
    # 'y' is an outputs of the graph.
    y = net.outputs['y']
    ve = 0.0

    for j in range(10000):
        x.d, vlabel.d = vdata.next()
        y.forward(clear_buffer=True)
        ve += categorical_error(y.d, vlabel.d)
    #monitor_verr.add(1, ve / args.val_iter)

    print("acc=", 1 - ve / 10000, ".")
    # append F.Softmax to the prediction graph so users see intuitive outputs
    runtime_contents = {
        'networks': [{
            'name': 'Validation',
            'batch_size': args.batch_size,
            'outputs': {
                'y': F.softmax(vpred)
            },
            'names': {
                'x': vimage
            }
        }],
        'executors': [{
            'name': 'Runtime',
            'network': 'Validation',
            'data': ['x'],
            'output': ['y']
        }]
    }
Beispiel #23
0
def train():
    """
    Main script.

    Steps:

    * Parse command line arguments.
    * Specify a context for computation.
    * Initialize DataIterator for MNIST.
    * Construct a computation graph for training and validation.
    * Initialize a solver and set parameter variables to it.
    * Create monitor instances for saving and displaying training stats.
    * Training loop
      * Computate error rate for validation data (periodically)
      * Get a next minibatch.
      * Set parameter gradients zero
      * Execute forwardprop on the training graph.
      * Execute backprop.
      * Solver updates parameters by using gradients computed by backprop.
      * Compute training error
    """
    args = get_args(monitor_path='tmp.monitor.bnn')

    # Get context.
    from nnabla.ext_utils import get_extension_context
    logger.info("Running in %s" % args.context)
    ctx = get_extension_context(
        args.context, device_id=args.device_id, type_config=args.type_config)
    nn.set_default_context(ctx)

    # Initialize DataIterator for MNIST.
    data = data_iterator_mnist(args.batch_size, True)
    vdata = data_iterator_mnist(args.batch_size, False)

    # Create CNN network for both training and testing.
    mnist_cnn_prediction = mnist_binary_connect_lenet_prediction
    if args.net == 'bincon':
        mnist_cnn_prediction = mnist_binary_connect_lenet_prediction
    elif args.net == 'binnet':
        mnist_cnn_prediction = mnist_binary_net_lenet_prediction
    elif args.net == 'bwn':
        mnist_cnn_prediction = mnist_binary_weight_lenet_prediction
    elif args.net == 'bincon_resnet':
        mnist_cnn_prediction = mnist_binary_connect_resnet_prediction
    elif args.net == 'binnet_resnet':
        mnist_cnn_prediction = mnist_binary_net_resnet_prediction
    elif args.net == 'bwn_resnet':
        mnist_cnn_prediction = mnist_binary_weight_resnet_prediction

    # TRAIN
    # Create input variables.
    image = nn.Variable([args.batch_size, 1, 28, 28])
    label = nn.Variable([args.batch_size, 1])
    # Create predition graph.
    pred = mnist_cnn_prediction(image / 255, test=False)
    pred.persistent = True
    # Create loss function.
    loss = F.mean(F.softmax_cross_entropy(pred, label))

    # TEST
    # Create input variables.
    vimage = nn.Variable([args.batch_size, 1, 28, 28])
    vlabel = nn.Variable([args.batch_size, 1])
    # Create predition graph.
    vpred = mnist_cnn_prediction(vimage / 255, test=True)

    # Create Solver.
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Create monitor.
    import nnabla.monitor as M
    monitor = M.Monitor(args.monitor_path)
    monitor_loss = M.MonitorSeries("Training loss", monitor, interval=10)
    monitor_err = M.MonitorSeries("Training error", monitor, interval=10)
    monitor_time = M.MonitorTimeElapsed("Training time", monitor, interval=100)
    monitor_verr = M.MonitorSeries("Test error", monitor, interval=10)

    # Training loop.
    for i in range(args.max_iter):
        if i % args.val_interval == 0:
            # Validation
            ve = 0.0
            for j in range(args.val_iter):
                vimage.d, vlabel.d = vdata.next()
                vpred.forward(clear_buffer=True)
                ve += categorical_error(vpred.d, vlabel.d)
            monitor_verr.add(i, ve / args.val_iter)
        if i % args.model_save_interval == 0:
            nn.save_parameters(os.path.join(
                args.model_save_path, 'params_%06d.h5' % i))
        # Training forward
        image.d, label.d = data.next()
        solver.zero_grad()
        loss.forward(clear_no_need_grad=True)
        # Training backward & update
        loss.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()
        # Monitor
        e = categorical_error(pred.d, label.d)
        monitor_loss.add(i, loss.d.copy())
        monitor_err.add(i, e)
        monitor_time.add(i)

    parameter_file = os.path.join(
        args.model_save_path, 'params_%06d.h5' % args.max_iter)
    nn.save_parameters(parameter_file)
Beispiel #24
0
def main():
    """
    Main script.

    Steps:
    * Get and set context.
    * Load Dataset
    * Initialize DataIterator.
    * Create Networks
    *   Net for Labeled Data
    *   Net for Unlabeled Data
    *   Net for Test Data
    * Create Solver.
    * Training Loop.
    *   Test
    *   Training
    *     by Labeled Data
    *       Calculate Supervised Loss
    *     by Unlabeled Data
    *       Calculate Virtual Adversarial Noise
    *       Calculate Unsupervised Loss
    """

    args = get_args()

    # Get context.
    from nnabla.ext_utils import get_extension_context
    logger.info("Running in %s" % args.context)
    ctx = get_extension_context(args.context,
                                device_id=args.device_id,
                                type_config=args.type_config)
    nn.set_default_context(ctx)

    shape_x = (1, 28, 28)
    n_h = args.n_units
    n_y = args.n_class

    # Load MNIST Dataset
    from mnist_data import load_mnist, data_iterator_mnist
    images, labels = load_mnist(train=True)
    rng = np.random.RandomState(706)
    inds = rng.permutation(len(images))

    def feed_labeled(i):
        j = inds[i]
        return images[j], labels[j]

    def feed_unlabeled(i):
        j = inds[i]
        return images[j], labels[j]

    di_l = data_iterator_simple(feed_labeled,
                                args.n_labeled,
                                args.batchsize_l,
                                shuffle=True,
                                rng=rng,
                                with_file_cache=False)
    di_u = data_iterator_simple(feed_unlabeled,
                                args.n_train,
                                args.batchsize_u,
                                shuffle=True,
                                rng=rng,
                                with_file_cache=False)
    di_v = data_iterator_mnist(args.batchsize_v, train=False)

    # Create networks
    # feed-forward-net building function
    def forward(x, test=False):
        return mlp_net(x, n_h, n_y, test)

    # Net for learning labeled data
    xl = nn.Variable((args.batchsize_l, ) + shape_x, need_grad=False)
    yl = forward(xl, test=False)
    tl = nn.Variable((args.batchsize_l, 1), need_grad=False)
    loss_l = F.mean(F.softmax_cross_entropy(yl, tl))

    # Net for learning unlabeled data
    xu = nn.Variable((args.batchsize_u, ) + shape_x, need_grad=False)
    yu = forward(xu, test=False)
    y1 = yu.get_unlinked_variable()
    y1.need_grad = False

    noise = nn.Variable((args.batchsize_u, ) + shape_x, need_grad=True)
    r = noise / (F.sum(noise**2, [1, 2, 3], keepdims=True))**0.5
    r.persistent = True
    y2 = forward(xu + args.xi_for_vat * r, test=False)
    y3 = forward(xu + args.eps_for_vat * r, test=False)
    loss_k = F.mean(distance(y1, y2))
    loss_u = F.mean(distance(y1, y3))

    # Net for evaluating validation data
    xv = nn.Variable((args.batchsize_v, ) + shape_x, need_grad=False)
    hv = forward(xv, test=True)
    tv = nn.Variable((args.batchsize_v, 1), need_grad=False)
    err = F.mean(F.top_n_error(hv, tv, n=1))

    # Create solver
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Monitor training and validation stats.
    import nnabla.monitor as M
    monitor = M.Monitor(args.model_save_path)
    monitor_verr = M.MonitorSeries("Test error", monitor, interval=240)
    monitor_time = M.MonitorTimeElapsed("Elapsed time", monitor, interval=240)

    # Training Loop.
    t0 = time.time()

    for i in range(args.max_iter):

        # Validation Test
        if i % args.val_interval == 0:
            valid_error = calc_validation_error(di_v, xv, tv, err,
                                                args.val_iter)
            monitor_verr.add(i, valid_error)

        #################################
        ## Training by Labeled Data #####
        #################################

        # forward, backward and update
        xl.d, tl.d = di_l.next()
        xl.d = xl.d / 255
        solver.zero_grad()
        loss_l.forward(clear_no_need_grad=True)
        loss_l.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()

        #################################
        ## Training by Unlabeled Data ###
        #################################

        # Calculate y without noise, only once.
        xu.d, _ = di_u.next()
        xu.d = xu.d / 255
        yu.forward(clear_buffer=True)

        ##### Calculate Adversarial Noise #####
        # Do power method iteration
        noise.d = np.random.normal(size=xu.shape).astype(np.float32)
        for k in range(args.n_iter_for_power_method):
            r.grad.zero()
            loss_k.forward(clear_no_need_grad=True)
            loss_k.backward(clear_buffer=True)
            noise.data.copy_from(r.grad)

        ##### Calculate loss for unlabeled data #####
        # forward, backward and update
        solver.zero_grad()
        loss_u.forward(clear_no_need_grad=True)
        loss_u.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()

        ##### Learning rate update #####
        if i % args.iter_per_epoch == 0:
            solver.set_learning_rate(solver.learning_rate() *
                                     args.learning_rate_decay)
        monitor_time.add(i)

    # Evaluate the final model by the error rate with validation dataset
    valid_error = calc_validation_error(di_v, xv, tv, err, args.val_iter)
    monitor_verr.add(i, valid_error)
    monitor_time.add(i)

    # Save the model.
    parameter_file = os.path.join(args.model_save_path,
                                  'params_%06d.h5' % args.max_iter)
    nn.save_parameters(parameter_file)
def classification_svd():
    args = get_args()

    # Get context.
    from nnabla.ext_utils import get_extension_context
    logger.info("Running in %s" % args.context)
    ctx = get_extension_context(args.context,
                                device_id=args.device_id,
                                type_config=args.type_config)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    mnist_cnn_prediction = mnist_lenet_prediction_slim

    # TRAIN
    reference = "reference"
    slim = "slim"
    rrate = 0.5  # reduction rate
    # Create input variables.
    image = nn.Variable([args.batch_size, 1, 28, 28])
    label = nn.Variable([args.batch_size, 1])
    # Create `reference` and "slim" prediction graph.
    model_load_path = args.model_load_path
    pred = mnist_cnn_prediction(image, scope=slim, rrate=rrate, test=False)
    pred.persistent = True

    # Decompose and set parameters
    decompose_network_and_set_params(model_load_path, reference, slim, rrate)
    loss = F.mean(F.softmax_cross_entropy(pred, label))

    # TEST
    # Create input variables.
    vimage = nn.Variable([args.batch_size, 1, 28, 28])
    vlabel = nn.Variable([args.batch_size, 1])
    # Create reference prediction graph.
    vpred = mnist_cnn_prediction(vimage, scope=slim, rrate=rrate, test=True)

    # Create Solver.
    solver = S.Adam(args.learning_rate)
    with nn.parameter_scope(slim):
        solver.set_parameters(nn.get_parameters())

    # Create monitor.
    from nnabla.monitor import Monitor, MonitorSeries, MonitorTimeElapsed
    monitor = Monitor(args.monitor_path)
    monitor_loss = MonitorSeries("Training loss", monitor, interval=10)
    monitor_err = MonitorSeries("Training error", monitor, interval=10)
    monitor_time = MonitorTimeElapsed("Training time", monitor, interval=100)
    monitor_verr = MonitorSeries("Test error", monitor, interval=10)

    # Initialize DataIterator for MNIST.
    data = data_iterator_mnist(args.batch_size, True)
    vdata = data_iterator_mnist(args.batch_size, False)
    best_ve = 1.0
    # Training loop.
    for i in range(args.max_iter):
        if i % args.val_interval == 0:
            # Validation
            ve = 0.0
            for j in range(args.val_iter):
                vimage.d, vlabel.d = vdata.next()
                vpred.forward(clear_buffer=True)
                ve += categorical_error(vpred.d, vlabel.d)
            monitor_verr.add(i, ve / args.val_iter)
        if ve < best_ve:
            nn.save_parameters(
                os.path.join(args.model_save_path, 'params_%06d.h5' % i))
            best_ve = ve
        # Training forward
        image.d, label.d = data.next()
        solver.zero_grad()
        loss.forward(clear_no_need_grad=True)
        loss.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()
        e = categorical_error(pred.d, label.d)
        monitor_loss.add(i, loss.d.copy())
        monitor_err.add(i, e)
        monitor_time.add(i)

    ve = 0.0
    for j in range(args.val_iter):
        vimage.d, vlabel.d = vdata.next()
        vpred.forward(clear_buffer=True)
        ve += categorical_error(vpred.d, vlabel.d)
    monitor_verr.add(i, ve / args.val_iter)

    parameter_file = os.path.join(args.model_save_path,
                                  'params_{:06}.h5'.format(args.max_iter))
    nn.save_parameters(parameter_file)
Beispiel #26
0
def train(args):
    """
    Main script.
    """

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    # TRAIN

    # Fake path
    z = nn.Variable([args.batch_size, 100, 1, 1])
    fake = generator(z)
    fake.persistent = True  # Not to clear at backward
    pred_fake = discriminator(fake)
    loss_gen = F.mean(
        F.sigmoid_cross_entropy(pred_fake, F.constant(1, pred_fake.shape)))
    fake_dis = fake.unlinked()
    pred_fake_dis = discriminator(fake_dis)
    loss_dis = F.mean(
        F.sigmoid_cross_entropy(pred_fake_dis,
                                F.constant(0, pred_fake_dis.shape)))

    # Real path
    x = nn.Variable([args.batch_size, 1, 28, 28])
    pred_real = discriminator(x)
    loss_dis += F.mean(
        F.sigmoid_cross_entropy(pred_real, F.constant(1, pred_real.shape)))

    # Create Solver.
    solver_gen = S.Adam(args.learning_rate, beta1=0.5)
    solver_dis = S.Adam(args.learning_rate, beta1=0.5)
    with nn.parameter_scope("gen"):
        solver_gen.set_parameters(nn.get_parameters())
    with nn.parameter_scope("dis"):
        solver_dis.set_parameters(nn.get_parameters())

    # Create monitor.
    import nnabla.monitor as M
    monitor = M.Monitor(args.monitor_path)
    monitor_loss_gen = M.MonitorSeries("Generator loss", monitor, interval=10)
    monitor_loss_dis = M.MonitorSeries("Discriminator loss",
                                       monitor,
                                       interval=10)
    monitor_time = M.MonitorTimeElapsed("Time", monitor, interval=100)
    monitor_fake = M.MonitorImageTile("Fake images",
                                      monitor,
                                      normalize_method=lambda x: x + 1 / 2.)

    data = data_iterator_mnist(args.batch_size, True)
    # Training loop.
    for i in range(args.max_iter):
        if i % args.model_save_interval == 0:
            with nn.parameter_scope("gen"):
                nn.save_parameters(
                    os.path.join(args.model_save_path,
                                 "generator_param_%06d.h5" % i))
            with nn.parameter_scope("dis"):
                nn.save_parameters(
                    os.path.join(args.model_save_path,
                                 "discriminator_param_%06d.h5" % i))

        # Training forward
        image, _ = data.next()
        x.d = image / 255. - 0.5  # [0, 255] to [-1, 1]
        z.d = np.random.randn(*z.shape)

        # Generator update.
        solver_gen.zero_grad()
        loss_gen.forward(clear_no_need_grad=True)
        loss_gen.backward(clear_buffer=True)
        solver_gen.weight_decay(args.weight_decay)
        solver_gen.update()
        monitor_fake.add(i, fake)
        monitor_loss_gen.add(i, loss_gen.d.copy())

        # Discriminator update.
        solver_dis.zero_grad()
        loss_dis.forward(clear_no_need_grad=True)
        loss_dis.backward(clear_buffer=True)
        solver_dis.weight_decay(args.weight_decay)
        solver_dis.update()
        monitor_loss_dis.add(i, loss_dis.d.copy())
        monitor_time.add(i)

    nnp = os.path.join(args.model_save_path, 'dcgan_%06d.nnp' % args.max_iter)
    runtime_contents = {
        'networks': [{
            'name': 'Generator',
            'batch_size': args.batch_size,
            'outputs': {
                'G': fake
            },
            'names': {
                'z': z
            }
        }, {
            'name': 'Discriminator',
            'batch_size': args.batch_size,
            'outputs': {
                'D': pred_real
            },
            'names': {
                'x': x
            }
        }],
        'executors': [{
            'name': 'Generator',
            'network': 'Generator',
            'data': ['z'],
            'output': ['G']
        }, {
            'name': 'Discriminator',
            'network': 'Discriminator',
            'data': ['x'],
            'output': ['D']
        }]
    }

    save.save(nnp, runtime_contents)
    from cpp_forward_check import check_cpp_forward
    check_cpp_forward(args.model_save_path, [z.d], [z], fake, nnp, "Generator")