Beispiel #1
0
def train_network(model, num_epochs=100, minibatch_size=256, lr=0.01, mom=0.75, wd=5e-4):
    # load data
    (train_data, test_data) = mnist_io.load_mb_from_mat('mnist_all.mat', minibatch_size / len(gpu))
    num_test_samples = test_data[0].shape[0]
    test_samples = owl.from_numpy(test_data[0]).reshape([28, 28, 1, num_test_samples])
    test_labels = owl.from_numpy(test_data[1])
    for i in xrange(num_epochs):
        print "---Epoch #", i
        last = time.time()
        count = 0
        weightgrads = [None] * len(gpu)
        biasgrads = [None] * len(gpu)
        for (mb_samples, mb_labels) in train_data:
            count += 1
            current_gpu = count % len(gpu)
            owl.set_device(gpu[current_gpu])
            num_samples = mb_samples.shape[0]
            data = owl.from_numpy(mb_samples).reshape([28, 28, 1, num_samples])
            label = owl.from_numpy(mb_labels)
            out, weightgrads[current_gpu], biasgrads[current_gpu] = bpprop(model, data, label)
            out.start_eval()
            if current_gpu == 0:
                for k in range(len(model.weights)):
                    model.weightdelta[k] = mom * model.weightdelta[k] - lr / num_samples / len(gpu) * multi_gpu_merge(weightgrads, 0, k) - lr * wd * model.weights[k]
                    model.biasdelta[k] = mom * model.biasdelta[k] - lr / num_samples / len(gpu) * multi_gpu_merge(biasgrads, 0, k)
                    model.weights[k] += model.weightdelta[k]
                    model.bias[k] += model.biasdelta[k]
                if count % (len(gpu) * lazy_cycle) == 0:
                    print_training_accuracy(out, label, num_samples, 'Training')
        print '---End of Epoch #', i, 'time:', time.time() - last
        # do test
        out, _, _  = bpprop(model, test_samples, test_labels)
        print_training_accuracy(out, test_labels, num_test_samples, 'Testing')
Beispiel #2
0
def train_network(model, num_epochs=100, minibatch_size=256, lr=0.01, mom=0.75, wd=5e-4):
    # load data
    (train_data, test_data) = mnist_io.load_mb_from_mat('mnist_all.mat', minibatch_size / len(gpu))
    num_test_samples = test_data[0].shape[0]
    test_samples = owl.from_numpy(test_data[0]).reshape([28, 28, 1, num_test_samples])
    test_labels = owl.from_numpy(test_data[1])
    for i in xrange(num_epochs):
        print "---Epoch #", i
        last = time.time()
        count = 0
        weightgrads = [None] * len(gpu)
        biasgrads = [None] * len(gpu)
        for (mb_samples, mb_labels) in train_data:
            count += 1
            current_gpu = count % len(gpu)
            owl.set_device(gpu[current_gpu])
            num_samples = mb_samples.shape[0]
            data = owl.from_numpy(mb_samples).reshape([28, 28, 1, num_samples])
            label = owl.from_numpy(mb_labels)
            out, weightgrads[current_gpu], biasgrads[current_gpu] = bpprop(model, data, label)
            if current_gpu == 0:
                for k in range(len(model.weights)):
                    model.weightdelta[k] = mom * model.weightdelta[k] - lr / num_samples / len(gpu) * multi_gpu_merge(weightgrads, 0, k) - lr * wd * model.weights[k]
                    model.biasdelta[k] = mom * model.biasdelta[k] - lr / num_samples / len(gpu) * multi_gpu_merge(biasgrads, 0, k)
                    model.weights[k] += model.weightdelta[k]
                    model.bias[k] += model.biasdelta[k]
                if count % (len(gpu) * lazy_cycle) == 0:
                    print_training_accuracy(out, label, num_samples, 'Training')
        print '---End of Epoch #', i, 'time:', time.time() - last
        # do test
        out, _, _  = bpprop(model, test_samples, test_labels)
        print_training_accuracy(out, test_labels, num_test_samples, 'Testing')
Beispiel #3
0
    def run(self):
        (train_data,
         test_data) = mnist_io.load_mb_from_mat(self.data_file, self.mb_size)
        np.set_printoptions(linewidth=200)
        num_test_samples = test_data[0].shape[0]
        (test_samples,
         test_labels) = map(lambda npdata: owl.from_numpy(npdata), test_data)
        count = 1
        owl.set_device(self.gpu)
        for epoch in range(self.num_epochs):
            print '---Start epoch #%d' % epoch
            # train
            for (mb_samples, mb_labels) in train_data:
                num_samples = mb_samples.shape[0]

                a1 = owl.from_numpy(mb_samples)
                target = owl.from_numpy(mb_labels)

                # ff
                a2 = ele.relu(self.w1 * a1 + self.b1)
                a3 = self.w2 * a2 + self.b2
                # softmax & error
                out = co.softmax(a3)
                s3 = out - target
                # bp
                s2 = self.w2.trans() * s3
                s2 = ele.relu_back(s2, a2)
                # grad
                gw1 = s2 * a1.trans() / num_samples
                gb1 = s2.sum(1) / num_samples
                gw2 = s3 * a2.trans() / num_samples
                gb2 = s3.sum(1) / num_samples
                # update
                self.w1 -= self.eps_w * gw1
                self.w2 -= self.eps_w * gw2
                self.b1 -= self.eps_b * gb1
                self.b2 -= self.eps_b * gb2

                if (count % 40 == 0):
                    correct = out.argmax(0) - target.argmax(0)
                    val = correct.to_numpy()
                    print 'Training error:', float(
                        np.count_nonzero(val)) / num_samples
                count = count + 1

            # test
            a1 = test_samples
            a2 = ele.relu(self.w1 * a1 + self.b1)
            a3 = self.w2 * a2 + self.b2
            correct = a3.argmax(0) - test_labels.argmax(0)
            val = correct.to_numpy()
            #print val
            print 'Testing error:', float(
                np.count_nonzero(val)) / num_test_samples
            print '---Finish epoch #%d' % epoch
Beispiel #4
0
    def run(self):
        (train_data,
         test_data) = mnist_io.load_mb_from_mat(self.data_file, self.mb_size)
        np.set_printoptions(linewidth=200)
        num_test_samples = test_data[0].shape[0]
        (test_samples, test_labels) = test_data
        count = 1
        for epoch in range(self.num_epochs):
            print '---Start epoch #%d' % epoch
            # train
            for (mb_samples, mb_labels) in train_data:
                num_samples = mb_samples.shape[0]

                a1 = mb_samples.T
                target = mb_labels.T

                # ff
                a2 = relu(np.dot(self.w1, a1) + self.b1)
                a3 = np.dot(self.w2, a2) + self.b2
                # softmax & error
                out = softmax(a3)
                s3 = out - target
                # bp
                s2 = np.dot(self.w2.T, s3)
                s2 = relu_back(s2, a2)
                # grad
                gw1 = np.dot(s2, a1.T) / num_samples
                gb1 = np.sum(s2, axis=1, keepdims=True) / num_samples
                gw2 = np.dot(s3, a2.T) / num_samples
                gb2 = np.sum(s3, axis=1, keepdims=True) / num_samples
                # update
                self.w1 -= self.eps_w * gw1
                self.w2 -= self.eps_w * gw2
                self.b1 -= self.eps_b * gb1
                self.b2 -= self.eps_b * gb2

                if (count % 40 == 0):
                    correct = np.max_index(out, axis=0) - np.max_index(target,
                                                                       axis=0)
                    print 'Training error:', float(
                        np.count_nonzero(correct)) / num_samples
                count = count + 1

            # test
            a1 = test_samples.T
            a2 = relu(np.dot(self.w1, a1) + self.b1)
            a3 = np.dot(self.w2, a2) + self.b2
            correct = np.max_index(a3, axis=0) - np.max_index(test_labels.T,
                                                              axis=0)
            #print correct
            print 'Testing error:', float(
                np.count_nonzero(correct)) / num_test_samples
            print '---Finish epoch #%d' % epoch
Beispiel #5
0
    def run(self):
        (train_data, test_data) = mnist_io.load_mb_from_mat(self.data_file, self.mb_size)
        np.set_printoptions(linewidth=200)
        num_test_samples = test_data[0].shape[0]
        (test_samples, test_labels) = map(lambda npdata : owl.from_numpy(npdata), test_data)
        count = 1
        owl.set_device(self.gpu)
        for epoch in range(self.num_epochs):
            print '---Start epoch #%d' % epoch
            # train
            for (mb_samples, mb_labels) in train_data:
                num_samples = mb_samples.shape[0]

                a1 = owl.from_numpy(mb_samples)
                target = owl.from_numpy(mb_labels)

                # ff
                a2 = ele.relu(self.w1 * a1 + self.b1)
                a3 = self.w2 * a2 + self.b2
                # softmax & error
                out = co.softmax(a3)
                s3 = out - target
                # bp
                s2 = self.w2.trans() * s3
                s2 = ele.relu_back(s2, a2)
                # grad
                gw1 = s2 * a1.trans() / num_samples
                gb1 = s2.sum(1) / num_samples
                gw2 = s3 * a2.trans() / num_samples
                gb2 = s3.sum(1) / num_samples
                # update
                self.w1 -= self.eps_w * gw1
                self.w2 -= self.eps_w * gw2
                self.b1 -= self.eps_b * gb1
                self.b2 -= self.eps_b * gb2

                if (count % 40 == 0):
                    correct = out.max_index(0) - target.max_index(0)
                    val = correct.to_numpy()
                    print 'Training error:', float(np.count_nonzero(val)) / num_samples
                count = count + 1

            # test
            a1 = test_samples
            a2 = ele.relu(self.w1 * a1 + self.b1)
            a3 = self.w2 * a2 + self.b2
            correct = a3.max_index(0) - test_labels.max_index(0)
            val = correct.to_numpy()
            #print val
            print 'Testing error:', float(np.count_nonzero(val)) / num_test_samples
            print '---Finish epoch #%d' % epoch
Beispiel #6
0
    def run(self):
        (train_data, test_data) = mnist_io.load_mb_from_mat(self.data_file, self.mb_size)
        np.set_printoptions(linewidth=200)
        num_test_samples = test_data[0].shape[0]
        (test_samples, test_labels) = test_data
        count = 1
        for epoch in range(self.num_epochs):
            print '---Start epoch #%d' % epoch
            # train
            for (mb_samples, mb_labels) in train_data:
                num_samples = mb_samples.shape[0]

                a1 = mb_samples.T
                target = mb_labels.T

                # ff
                a2 = relu(np.dot(self.w1, a1) + self.b1)
                a3 = np.dot(self.w2, a2) + self.b2
                # softmax & error
                out = softmax(a3)
                s3 = out - target
                # bp
                s2 = np.dot(self.w2.T, s3)
                s2 = relu_back(s2, a2)
                # grad
                gw1 = np.dot(s2, a1.T) / num_samples
                gb1 = np.sum(s2, axis=1, keepdims=True) / num_samples
                gw2 = np.dot(s3, a2.T) / num_samples
                gb2 = np.sum(s3, axis=1, keepdims=True) / num_samples
                # update
                self.w1 -= self.eps_w * gw1
                self.w2 -= self.eps_w * gw2
                self.b1 -= self.eps_b * gb1
                self.b2 -= self.eps_b * gb2

                if (count % 40 == 0):
                    correct = np.max_index(out, axis=0) - np.max_index(target, axis=0)
                    print 'Training error:', float(np.count_nonzero(correct)) / num_samples
                count = count + 1

            # test
            a1 = test_samples.T
            a2 = relu(np.dot(self.w1, a1) + self.b1)
            a3 = np.dot(self.w2, a2) + self.b2
            correct = np.max_index(a3, axis=0) - np.max_index(test_labels.T, axis=0)
            #print correct
            print 'Testing error:', float(np.count_nonzero(correct)) / num_test_samples
            print '---Finish epoch #%d' % epoch
Beispiel #7
0
def train_network(filename, model, num_epochs=5, minibatch_size=256, lr=0.1, lr_decay= 0.95, mom=0.9, wd=5e-4):
    # load data
    (train_data, test_data) = mnist_io.load_mb_from_mat(filename, minibatch_size / len(devs))
    num_test_samples = test_data[0].shape[0]
    test_samples = owl.from_numpy(test_data[0]).reshape([28, 28, 1, num_test_samples])
    test_labels = owl.from_numpy(test_data[1])
    for i in xrange(num_epochs):
        print "---Epoch #", i
        last = time.time()
        count = 0
        weightgrads = [None] * len(devs)
        biasgrads = [None] * len(devs)
        for (mb_samples, mb_labels) in train_data:
            count += 1
            current_dev = count % len(devs)
            owl.set_device(devs[current_dev])
            num_samples = mb_samples.shape[0]
            data = owl.from_numpy(mb_samples).reshape([28, 28, 1, num_samples])
            label = owl.from_numpy(mb_labels)
            #print "\t[{}]Train Data imported to minerva format".format(count)
            out, weightgrads[current_dev], biasgrads[current_dev] = bpprop(model, data, label)
            #print "\t[{}]Backprop complete".format(count)
#             print "dev {}".format(current_dev)
            if current_dev == 0:
#                 print "pre-merge"
                for k in range(len(model.weights)):
                    model.weightdelta[k] = mom * model.weightdelta[k] - lr / num_samples / len(devs) * multi_dev_merge(weightgrads, 0, k) - lr * wd * model.weights[k]
#                     print "\t weight merge"
                    model.biasdelta[k] = mom * model.biasdelta[k] - lr / num_samples / len(devs) * multi_dev_merge(biasgrads, 0, k)
#                     print "\t bias merge"
                    model.weights[k] += model.weightdelta[k]
                    model.bias[k] += model.biasdelta[k]
#                 print "post-merge"
                if count % (len(devs) * lazy_cycle) == 0:
                    print_training_accuracy(out, label, num_samples, 'Training ' + str(count))
                    owl.print_profiler_result()
        print '---End of Epoch #', i, 'time:', time.time() - last
        lr = lr*lr_decay
        # do test
        out, _, _  = bpprop(model, test_samples, test_labels)
        print_training_accuracy(out, test_labels, num_test_samples, 'Testing')