def migrate_source_metadata(name, source, dataset_folder, menu_name):
    source_type = source["type"]
    xml_locations = source["storage"]
    xml_path = os.path.join(dataset_folder, "images", xml_locations["local"])

    if source_type in ("image", "mask"):
        view = metadata.get_default_view(
            "image",
            name,
            menu_name=menu_name,
            color=source["color"],
            contrastLimits=source["contrastLimits"])
        new_source = metadata.get_image_metadata(dataset_folder, xml_path)
        source_type = "image"

    else:
        assert source_type == "segmentation"

        if "tableFolder" in source:
            table_location = os.path.join(dataset_folder,
                                          source["tableFolder"])
            assert os.path.exists(table_location), table_location
        else:
            table_location = None

        seg_color = source["color"]
        seg_color = "glasbey" if seg_color == "randomFromGlasbey" else seg_color
        if table_location is None:
            view = metadata.get_default_view("segmentation",
                                             name,
                                             menu_name=menu_name,
                                             lut=seg_color)
        else:
            view = metadata.get_default_view("segmentation",
                                             name,
                                             menu_name=menu_name,
                                             lut=seg_color,
                                             tables=["default.tsv"])

        new_source = metadata.get_segmentation_metadata(
            dataset_folder, xml_path, table_location=table_location)

    if "remote" in xml_locations:
        remote_xml = os.path.join("images", xml_locations["remote"])
        new_source[source_type]["imageData"]["bdv.n5.s3"] = {
            "relativePath": remote_xml
        }
        has_remote = True
    else:
        has_remote = False

    return new_source, view, has_remote
Beispiel #2
0
 def get_dataset_metadata(self):
     dataset_metadata = {
         "is2D": False,
         "description": "My dataset.",
         "sources": {
             "image1":
             metadata.get_image_metadata("image1",
                                         "/images/image1.xml",
                                         file_format="bdv.n5"),
             "seg1":
             metadata.get_segmentation_metadata("seg1",
                                                "/images/seg1.xml",
                                                file_format="bdv.n5")
         },
         "views": {
             "default": metadata.get_default_view("image", "image1")
         }
     }
     return dataset_metadata
Beispiel #3
0
def require_dataset_and_view(root,
                             dataset_name,
                             file_format,
                             source_type,
                             source_name,
                             menu_name,
                             view,
                             is_default_dataset,
                             contrast_limits=None):
    ds_exists = require_dataset(root, dataset_name, file_format)

    dataset_folder = os.path.join(root, dataset_name)
    if view is None:
        kwargs = {
            "contrastLimits": contrast_limits
        } if source_type == "image" else {}
        view = metadata.get_default_view(source_type,
                                         source_name,
                                         menu_name=menu_name,
                                         **kwargs)
    else:
        update_view = {}
        if menu_name is not None:
            update_view["uiSelectionGroup"] = menu_name
        if source_type == "image" and contrast_limits is None:
            update_view["contrastLimits"] = contrast_limits
        if update_view:
            view.update(update_view)
    validate_view_metadata(view, sources=[source_name])

    if not ds_exists:
        metadata.create_dataset_structure(root, dataset_name, [file_format])
        default_view = deepcopy(view)
        default_view.update({"uiSelectionGroup": "bookmark"})
        metadata.create_dataset_metadata(dataset_folder,
                                         views={"default": default_view})
        metadata.add_dataset(root, dataset_name, is_default_dataset)

    return view
Beispiel #4
0
def get_source(client, bucket, container, internal_path, endpoint,
               dataset_folder, source_name, view, menu_name):
    source_object = os.path.join(container, internal_path, 'attributes.json')
    attrs_file = s3_utils.download_file(client, bucket, source_object)
    with open(attrs_file) as f:
        attrs = json.load(f)
    name = attrs['name'] if source_name is None else source_name

    # for now we hard-code the source type to image.
    # in the future it would be nice to infer this somehow from the attributes
    source_type = 'image'

    # get the mobie source metadata
    address = os.path.join(endpoint, bucket, container, internal_path)
    if source_type == 'image':
        source = metadata.get_image_metadata(dataset_folder,
                                             address,
                                             file_format='openOrganelle.s3')
    else:
        source = metadata.get_segmentation_metadata(
            dataset_folder, address, file_format='openOrganelle.s3')

    # get the mobie view metadata

    # if the menu-name was not specified, we infer it from the root of the source name
    if menu_name is None:
        menu_name = os.path.split(internal_path)[0]
        menu_name = name if menu_name == "" else menu_name

    if view is None:
        view = metadata.get_default_view(source_type,
                                         name,
                                         menu_name=menu_name)
    else:
        view.update({"uiSelectionGroup": menu_name})
    validate_view_metadata(view, sources=[name])

    return name, source, view
Beispiel #5
0
    [5.098000335693359, 0.0, 0.0, 39024.47988128662,
     0.0, 5.098000335693359, 0.0, 44361.50386505127,
     0.0, 0.0, 5.098000335693359, 0.0]
]

# add the two tomograms
for name, trafo in zip(tomo_names, transformations):
    im_name = f"em-{os.path.splitext(name)[0]}"
    im_path = os.path.join(example_input_data, name)

    # Here, we set the default contrast limits that will
    # be applied in mobie to the min / max value of the data.
    im = imageio.volread(im_path)
    min_val, max_val = im.min(), im.max()
    view = metadata.get_default_view("image", im_name,
                                     source_transform={'parameters': trafo},
                                     contrastLimits=[min_val, max_val])

    mobie.add_image(
        input_path=im_path,
        input_key="",
        root=mobie_project_folder,
        dataset_name=dataset_name,
        image_name=im_name,
        resolution=resolution,
        scale_factors=scale_factors,
        transformation=trafo,
        chunks=chunks,
        target=target,
        max_jobs=max_jobs,
        view=view,
Beispiel #6
0
    def test_viewer_transform(self):
        from mobie.metadata import get_default_view

        trafos = [
            {
                "timepoint": 0
            },
            {
                "affine": np.random.rand(12).tolist()
            },
            {
                "affine": np.random.rand(12).tolist(),
                "timepoint": 0
            },
            {
                "normalizedAffine": np.random.rand(12).tolist()
            },
            {
                "normalizedAffine": np.random.rand(12).tolist(),
                "timepoint": 1
            },
            {
                "position": np.random.rand(3).tolist()
            },
            {
                "position": np.random.rand(3).tolist(),
                "timepoint": 2
            },
            {
                "normalVector": np.random.rand(3).tolist()
            },
        ]
        for trafo in trafos:
            view = get_default_view("image",
                                    "my-image",
                                    viewer_transform=trafo)
            validate_with_schema(view, "view")

        # test missing fields
        invalid_trafos = [{"foo": "bar"}]
        for trafo in invalid_trafos:
            view = get_default_view("image",
                                    "my-image",
                                    viewer_transform=trafo)
            with self.assertRaises(ValidationError):
                validate_with_schema(view, "view")

        # test invalid fields
        invalid_trafos = [{
            "timepoint": 0,
            "foo": "bar"
        }, {
            "affine": np.random.rand(12).tolist(),
            "foo": "bar"
        }, {
            "normalizedAffine": np.random.rand(12).tolist(),
            "x": "y"
        }, {
            "position": np.random.rand(3).tolist(),
            "a": 3
        }]
        for trafo in invalid_trafos:
            view = get_default_view("image",
                                    "my-image",
                                    viewer_transform=trafo)
            with self.assertRaises(ValidationError):
                validate_with_schema(view, "view")

        # test invalid values
        invalid_trafos = [{
            "timepoint": -1
        }, {
            "affine": np.random.rand(11).tolist()
        }, {
            "normalizedAffine": np.random.rand(13).tolist()
        }, {
            "position": np.random.rand(4).tolist()
        }]
        for trafo in invalid_trafos:
            view = get_default_view("image",
                                    "my-image",
                                    viewer_transform=trafo)
            with self.assertRaises(ValidationError):
                validate_with_schema(view, "view")
Beispiel #7
0
    def test_image_view(self):
        from mobie.metadata import get_default_view

        # test the default view
        view = get_default_view("image", "my-image")
        validate_with_schema(view, "view")

        # test custom image settings
        custom_kwargs = [
            {
                "contrastLimits": [0., 255.],
                "color": "white"
            },
            {
                "contrastLimits": [0., 2000.],
                "color": "red"
            },
            {
                "contrastLimits": [-10., 20000000.]
            },
            {
                "showImagesIn3d": True
            },
            {
                "showImagesIn3d": True,
                "resolution3dView": [10., 10., 12.]
            },
            {
                "blendingMode": "sumOccluding"
            },
        ]
        for kwargs in custom_kwargs:
            view = get_default_view("image", "my-image", **kwargs)
            validate_with_schema(view, "view")

        # test missing fields
        view = get_default_view("image", "my-image")
        view["sourceDisplays"][0]["imageDisplay"].pop("color")
        with self.assertRaises(ValidationError):
            validate_with_schema(view, "view")

        # test invalid fields
        view = get_default_view("image", "my-image")
        view["foo"] = "bar"
        with self.assertRaises(ValidationError):
            validate_with_schema(view, "view")

        view = get_default_view("image", "my-image")
        view["sourceDisplays"][0]["imageDisplay"]["foo"] = "bar"
        with self.assertRaises(ValidationError):
            validate_with_schema(view, "view")

        # test invalid values
        invalid_kwargs = [{
            "uiSelectionGroup": "abc a"
        }, {
            "uiSelectionGroup": "abc/a"
        }, {
            "uiSelectionGroup": "abc;"
        }, {
            "color": "foobar"
        }, {
            "color": "r=1,g=2,b=3,a=4,z=5"
        }, {
            "contrastLimits": [1., 2., 3.]
        }, {
            "showImagesIn3d": "foobar"
        }, {
            "resolution3dView": [1., 2., 3., 4.]
        }, {
            "blendingMode": "summe"
        }]
        for kwargs in invalid_kwargs:
            if "uiSelectionGroup" in kwargs:
                menu_name = kwargs.pop("uiSelectionGroup")
            view = get_default_view("image",
                                    "my-image",
                                    menu_name=menu_name,
                                    **kwargs)
            with self.assertRaises(ValidationError):
                validate_with_schema(view, "view")
Beispiel #8
0
    def test_segmentation_view(self):
        from mobie.metadata import get_default_view

        # test the default view
        view = get_default_view("segmentation", "my-seg")
        validate_with_schema(view, "view")

        # test custom segmentation settings
        custom_kwargs = [{
            "opacity": 0.5,
            "lut": "glasbey"
        }, {
            "opacity": 0.9,
            "lut": "viridis",
            "colorByColumn": "colname",
            "showSelectedSegmentsIn3d": True,
            "tables": ["a.csv", "b.tsv"],
            "valueLimits": [0, 2500]
        }, {
            "selectedSegmentIds": ["my-seg;0;1", "my-seg;0;2", "my-seg;1;10"]
        }, {
            "showAsBoundaries": True,
            "boundaryThickness": 12
        }]
        for kwargs in custom_kwargs:
            view = get_default_view("segmentation", "my-seg", **kwargs)
            validate_with_schema(view, "view")

        # test missing fields
        view = get_default_view("segmentation", "my-seg")
        view["sourceDisplays"][0]["segmentationDisplay"].pop("opacity")
        with self.assertRaises(ValidationError):
            validate_with_schema(view, "view")

        # test invalid fields
        view = get_default_view("segmentation", "my-seg")
        view["sourceDisplays"][0]["segmentationDisplay"]["foo"] = "bar"
        with self.assertRaises(ValidationError):
            validate_with_schema(view, "view")

        # test invalid values
        invalid_kwargs = [{
            "opacity": 10
        }, {
            "lut": "red"
        }, {
            "lut": "foobar"
        }, {
            "selectedSegmentIds": ["my-seg,0,2"]
        }, {
            "selectedSegmentIds": ["my-seg/abc;0;2"]
        }, {
            "selectedSegmentIds": ["my-segc;abba;2"]
        }]
        for kwargs in invalid_kwargs:
            view = get_default_view("segmentation", "my-seg", **kwargs)
            with self.assertRaises(ValidationError):
                validate_with_schema(view, "view")

        # test view with source transformations
        trafos = [{
            "parameters": np.random.rand(12).tolist()
        }, {
            "parameters": np.random.rand(12).tolist(),
            "timepoints": [0]
        }, {
            "parameters": np.random.rand(12).tolist(),
            "timepoints": [1, 2, 3]
        }]
        for trafo in trafos:
            view = get_default_view("image",
                                    "my-image",
                                    source_transform=trafo)
            validate_with_schema(view, "view")

        # test invalid values
        invalid_trafos = [{
            "parameters": np.random.rand(12).tolist(),
            "timepoints": [-1]
        }, {
            "parameters": np.random.rand(12).tolist(),
            "timepoints": [-1, 2, 3]
        }]
        for trafo in invalid_trafos:
            view = get_default_view("image",
                                    "my-image",
                                    source_transform=trafo)
            with self.assertRaises(ValidationError):
                validate_with_schema(view, "view")