Beispiel #1
0
 def get_matrix_multiplication_question(self):
     why = TextMobject("Why?").highlight(BLUE) 
     mult = self.get_matrix_multiplication()
     why.next_to(mult, UP)
     result = VMobject(why, mult)
     result.get_center = lambda : mult.get_center()
     return result
Beispiel #2
0
 def get_matrix_multiplication_question(self):
     why = TextMobject("Why?").highlight(BLUE)
     mult = self.get_matrix_multiplication()
     why.next_to(mult, UP)
     result = VMobject(why, mult)
     result.get_center = lambda: mult.get_center()
     return result
Beispiel #3
0
 def get_cross_product_question(self):
     cross = TexMobject("\\vec{v} \\times \\vec{w}")
     left_right_arrow = DoubleArrow(Point(LEFT), Point(RIGHT))
     det = TextMobject("Det")
     q_mark = TextMobject("?")
     left_right_arrow.next_to(cross)
     det.next_to(left_right_arrow)
     q_mark.next_to(left_right_arrow, UP)
     cross_question = VMobject(cross, left_right_arrow, q_mark, det)
     cross_question.get_center = lambda: left_right_arrow.get_center()
     return cross_question
Beispiel #4
0
 def get_cross_product_question(self):
     cross = TexMobject("\\vec{v} \\times \\vec{w}")
     left_right_arrow = DoubleArrow(Point(LEFT), Point(RIGHT))
     det = TextMobject("Det")
     q_mark = TextMobject("?")
     left_right_arrow.next_to(cross)
     det.next_to(left_right_arrow)
     q_mark.next_to(left_right_arrow, UP)
     cross_question = VMobject(cross, left_right_arrow, q_mark, det)
     cross_question.get_center = lambda : left_right_arrow.get_center()
     return cross_question
Beispiel #5
0
class PiCreature(SVGMobject):
    CONFIG = {
        "color": BLUE_E,
        "stroke_width": 0,
        "fill_opacity": 1.0,
        "initial_scale_factor": 0.01,
        "corner_scale_factor": 0.75,
        "flip_at_start": False,
        "is_looking_direction_purposeful": False,
        "start_corner": None,
    }

    def __init__(self, mode="plain", **kwargs):
        self.parts_named = False
        svg_file = os.path.join(PI_CREATURE_DIR, "PiCreatures_%s.svg" % mode)
        digest_config(self, kwargs, locals())
        SVGMobject.__init__(self, svg_file, **kwargs)
        self.init_colors()
        if self.flip_at_start:
            self.flip()
        if self.start_corner is not None:
            self.to_corner(self.start_corner)

    def name_parts(self):
        self.mouth = self.submobjects[MOUTH_INDEX]
        self.body = self.submobjects[BODY_INDEX]
        self.pupils = VMobject(*[
            self.submobjects[LEFT_PUPIL_INDEX],
            self.submobjects[RIGHT_PUPIL_INDEX]
        ])
        self.eyes = VMobject(*[
            self.submobjects[LEFT_EYE_INDEX], self.submobjects[RIGHT_EYE_INDEX]
        ])
        self.submobjects = []
        self.add(self.body, self.mouth, self.eyes, self.pupils)
        self.parts_named = True

    def init_colors(self):
        self.set_stroke(color=BLACK, width=self.stroke_width)
        if not self.parts_named:
            self.name_parts()
        self.mouth.set_fill(BLACK, opacity=1)
        self.body.set_fill(self.color, opacity=1)
        self.pupils.set_fill(BLACK, opacity=1)
        self.eyes.set_fill(WHITE, opacity=1)
        return self

    def highlight(self, color):
        self.body.set_fill(color)
        return self

    def change_mode(self, mode):
        curr_eye_center = self.eyes.get_center()
        curr_height = self.get_height()
        should_be_flipped = self.is_flipped()
        should_look = hasattr(self, "purposeful_looking_direction")
        if should_look:
            looking_direction = self.purposeful_looking_direction
        self.__init__(mode)
        self.scale_to_fit_height(curr_height)
        self.shift(curr_eye_center - self.eyes.get_center())
        if should_be_flipped ^ self.is_flipped():
            self.flip()
        if should_look:
            self.look(looking_direction)
        return self

    def look(self, direction):
        direction = direction / np.linalg.norm(direction)
        self.purposeful_looking_direction = direction
        for pupil, eye in zip(self.pupils.split(), self.eyes.split()):
            pupil_radius = pupil.get_width() / 2.
            eye_radius = eye.get_width() / 2.
            pupil.move_to(eye)
            if direction[1] < 0:
                pupil.shift(pupil_radius * DOWN / 3)
            pupil.shift(direction * (eye_radius - pupil_radius))
            bottom_diff = eye.get_bottom()[1] - pupil.get_bottom()[1]
            if bottom_diff > 0:
                pupil.shift(bottom_diff * UP)
        return self

    def look_at(self, point_or_mobject):
        if isinstance(point_or_mobject, Mobject):
            point = point_or_mobject.get_center()
        else:
            point = point_or_mobject
        self.look(point - self.eyes.get_center())
        return self

    def get_looking_direction(self):
        return np.sign(
            np.round(self.pupils.get_center() - self.eyes.get_center(),
                     decimals=2))

    def is_flipped(self):
        return self.eyes.submobjects[0].get_center()[0] > \
               self.eyes.submobjects[1].get_center()[0]

    def blink(self):
        eye_bottom_y = self.eyes.get_bottom()[1]
        for mob in self.eyes, self.pupils:
            mob.apply_function(lambda p: [p[0], eye_bottom_y, p[2]])
        return self

    def to_corner(self, vect=None):
        if vect is not None:
            SVGMobject.to_corner(self, vect)
        else:
            self.scale(self.corner_scale_factor)
            self.to_corner(DOWN + LEFT)
        return self

    def get_bubble(self, bubble_type="thought", **kwargs):
        if bubble_type == "thought":
            bubble = ThoughtBubble(**kwargs)
        elif bubble_type == "speech":
            bubble = SpeechBubble(**kwargs)
        else:
            raise Exception("%s is an invalid bubble type" % bubble_type)
        bubble.pin_to(self)
        return bubble
Beispiel #6
0
class NumberPlane(VMobject):
    CONFIG = {
        "color" : BLUE_D,
        "secondary_color" : BLUE_E,
        "axes_color" : WHITE,
        "secondary_stroke_width" : 1,
        "x_radius": None,
        "y_radius": None,
        "x_unit_size" : 1,
        "y_unit_size" : 1,
        "center_point" : ORIGIN,
        "x_line_frequency" : 1,
        "y_line_frequency" : 1,
        "secondary_line_ratio" : 1,
        "written_coordinate_height" : 0.2,
        "propagate_style_to_family" : False,
    }
    def generate_points(self):
        if self.x_radius is None:
            center_to_edge = (SPACE_WIDTH + abs(self.center_point[0])) 
            self.x_radius = center_to_edge / self.x_unit_size
        if self.y_radius is None:
            center_to_edge = (SPACE_HEIGHT + abs(self.center_point[1])) 
            self.y_radius = center_to_edge / self.y_unit_size
        self.axes = VMobject()
        self.main_lines = VMobject()
        self.secondary_lines = VMobject()
        tuples = [
            (
                self.x_radius, 
                self.x_line_frequency, 
                self.y_radius*DOWN, 
                self.y_radius*UP,
                RIGHT
            ),
            (
                self.y_radius, 
                self.y_line_frequency, 
                self.x_radius*LEFT, 
                self.x_radius*RIGHT,
                UP,
            ),
        ]
        for radius, freq, start, end, unit in tuples:
            main_range = np.arange(0, radius, freq)
            step = freq/float(freq + self.secondary_line_ratio)
            for v in np.arange(0, radius, step):
                line1 = Line(start+v*unit, end+v*unit)
                line2 = Line(start-v*unit, end-v*unit)                
                if v == 0:
                    self.axes.add(line1)
                elif v in main_range:
                    self.main_lines.add(line1, line2)
                else:
                    self.secondary_lines.add(line1, line2)
        self.add(self.secondary_lines, self.main_lines, self.axes)
        self.stretch(self.x_unit_size, 0)
        self.stretch(self.y_unit_size, 1)
        self.shift(self.center_point)
        #Put x_axis before y_axis
        y_axis, x_axis = self.axes.split()
        self.axes = VMobject(x_axis, y_axis)

    def init_colors(self):
        VMobject.init_colors(self)
        self.axes.set_stroke(self.axes_color, self.stroke_width)
        self.main_lines.set_stroke(self.color, self.stroke_width)
        self.secondary_lines.set_stroke(
            self.secondary_color, self.secondary_stroke_width
        )
        return self

    def get_center_point(self):
        return self.coords_to_point(0, 0)

    def coords_to_point(self, x, y):
        x, y = np.array([x, y])
        result = self.axes.get_center()
        result += x*self.get_x_unit_size()*RIGHT
        result += y*self.get_y_unit_size()*UP
        return result

    def point_to_coords(self, point):
        new_point = point - self.axes.get_center()
        x = new_point[0]/self.get_x_unit_size()
        y = new_point[1]/self.get_y_unit_size()
        return x, y

    def get_x_unit_size(self):
        return self.axes.get_width() / (2.0*self.x_radius)

    def get_y_unit_size(self):
        return self.axes.get_height() / (2.0*self.y_radius)

    def get_coordinate_labels(self, x_vals = None, y_vals = None):
        coordinate_labels = VGroup()
        if x_vals == None:
            x_vals = range(-int(self.x_radius), int(self.x_radius)+1)
        if y_vals == None:
            y_vals = range(-int(self.y_radius), int(self.y_radius)+1)
        for index, vals in enumerate([x_vals, y_vals]):
            num_pair = [0, 0]
            for val in vals:
                if val == 0:
                    continue
                num_pair[index] = val
                point = self.coords_to_point(*num_pair)
                num = TexMobject(str(val))
                num.add_background_rectangle()
                num.scale_to_fit_height(
                    self.written_coordinate_height
                )
                num.next_to(point, DOWN+LEFT, buff = SMALL_BUFF)
                coordinate_labels.add(num)
        self.coordinate_labels = coordinate_labels
        return coordinate_labels

    def get_axes(self):
        return self.axes

    def get_axis_labels(self, x_label = "x", y_label = "y"):
        x_axis, y_axis = self.get_axes().split()
        quads = [
            (x_axis, x_label, UP, RIGHT),
            (y_axis, y_label, RIGHT, UP),
        ]
        labels = VGroup()
        for axis, tex, vect, edge in quads:
            label = TexMobject(tex)
            label.add_background_rectangle()
            label.next_to(axis, vect)
            label.to_edge(edge)
            labels.add(label)
        self.axis_labels = labels
        return labels

    def add_coordinates(self, x_vals = None, y_vals = None):
        self.add(*self.get_coordinate_labels(x_vals, y_vals))
        return self

    def get_vector(self, coords, **kwargs):
        point = coords[0]*RIGHT + coords[1]*UP
        arrow = Arrow(ORIGIN, coords, **kwargs)
        return arrow

    def prepare_for_nonlinear_transform(self, num_inserted_anchor_points = 50):
        for mob in self.family_members_with_points():
            num_anchors = mob.get_num_anchor_points()
            if num_inserted_anchor_points > num_anchors:
                mob.insert_n_anchor_points(num_inserted_anchor_points-num_anchors)
                mob.make_smooth()
        return self

    def apply_function(self, function, maintain_smoothness = True):
        VMobject.apply_function(self, function, maintain_smoothness = maintain_smoothness)
Beispiel #7
0
 def get_center(self):
     result = VMobject.get_center(self)
     if hasattr(self, "center_offset"):
         result -= self.center_offset
     return result
Beispiel #8
0
class NumberPlane(VMobject):
    CONFIG = {
        "color": BLUE_D,
        "secondary_color": BLUE_E,
        "axes_color": WHITE,
        "secondary_stroke_width": 1,
        "x_radius": SPACE_WIDTH,
        "y_radius": SPACE_HEIGHT,
        "space_unit_to_x_unit": 1,
        "space_unit_to_y_unit": 1,
        "x_line_frequency": 1,
        "y_line_frequency": 1,
        "secondary_line_ratio": 1,
        "written_coordinate_height": 0.2,
        "written_coordinate_nudge": 0.1 * (DOWN + RIGHT),
        "num_pair_at_center": (0, 0),
        "propogate_style_to_family": False,
    }

    def generate_points(self):
        self.axes = VMobject()
        self.main_lines = VMobject()
        self.secondary_lines = VMobject()
        tuples = [
            (self.x_radius, self.x_line_frequency, self.y_radius * DOWN,
             self.y_radius * UP, RIGHT),
            (
                self.y_radius,
                self.y_line_frequency,
                self.x_radius * LEFT,
                self.x_radius * RIGHT,
                UP,
            ),
        ]
        for radius, freq, start, end, unit in tuples:
            main_range = np.arange(0, radius, freq)
            step = freq / float(freq + self.secondary_line_ratio)
            for v in np.arange(0, radius, step):
                line1 = Line(start + v * unit, end + v * unit)
                line2 = Line(start - v * unit, end - v * unit)
                if v == 0:
                    self.axes.add(line1)
                elif v in main_range:
                    self.main_lines.add(line1, line2)
                else:
                    self.secondary_lines.add(line1, line2)
        self.add(self.secondary_lines, self.main_lines, self.axes)
        self.stretch(self.space_unit_to_x_unit, 0)
        self.stretch(self.space_unit_to_y_unit, 1)
        #Put x_axis before y_axis
        y_axis, x_axis = self.axes.split()
        self.axes = VMobject(x_axis, y_axis)

    def init_colors(self):
        VMobject.init_colors(self)
        self.axes.set_stroke(self.axes_color, self.stroke_width)
        self.main_lines.set_stroke(self.color, self.stroke_width)
        self.secondary_lines.set_stroke(self.secondary_color,
                                        self.secondary_stroke_width)
        return self

    def get_center_point(self):
        return self.num_pair_to_point(self.num_pair_at_center)

    def num_pair_to_point(self, pair):
        pair = np.array(pair) + self.num_pair_at_center
        result = self.axes.get_center()
        result[0] += pair[0] * self.space_unit_to_x_unit
        result[1] += pair[1] * self.space_unit_to_y_unit
        return result

    def point_to_num_pair(self, point):
        new_point = point - self.get_center()
        center_x, center_y = self.num_pair_at_center
        x = center_x + point[0] / self.space_unit_to_x_unit
        y = center_y + point[1] / self.space_unit_to_y_unit
        return x, y

    def get_coordinate_labels(self, x_vals=None, y_vals=None):
        result = []
        if x_vals == None and y_vals == None:
            x_vals = range(-int(self.x_radius), int(self.x_radius))
            y_vals = range(-int(self.y_radius), int(self.y_radius))
        for index, vals in enumerate([x_vals, y_vals]):
            num_pair = [0, 0]
            for val in vals:
                num_pair[index] = val
                point = self.num_pair_to_point(num_pair)
                num = TexMobject(str(val))
                num.scale_to_fit_height(self.written_coordinate_height)
                num.shift(point - num.get_corner(UP + LEFT),
                          self.written_coordinate_nudge)
                result.append(num)
        return result

    def get_axes(self):
        return self.axes

    def get_axis_labels(self, x_label="x", y_label="y"):
        x_axis, y_axis = self.get_axes().split()
        x_label_mob = TexMobject(x_label)
        y_label_mob = TexMobject(y_label)
        x_label_mob.next_to(x_axis, DOWN)
        x_label_mob.to_edge(RIGHT)
        y_label_mob.next_to(y_axis, RIGHT)
        y_label_mob.to_edge(UP)
        return VMobject(x_label_mob, y_label_mob)

    def add_coordinates(self, x_vals=None, y_vals=None):
        self.add(*self.get_coordinate_labels(x_vals, y_vals))
        return self

    def get_vector(self, coords, **kwargs):
        point = coords[0] * RIGHT + coords[1] * UP
        arrow = Arrow(ORIGIN, coords, **kwargs)
        return arrow

    def prepare_for_nonlinear_transform(self, num_inserted_anchor_points=50):
        for mob in self.family_members_with_points():
            num_anchors = mob.get_num_anchor_points()
            if num_inserted_anchor_points > num_anchors:
                mob.insert_n_anchor_points(num_inserted_anchor_points -
                                           num_anchors)
                mob.make_smooth()
        return self
Beispiel #9
0
class NumberPlane(VMobject):
    CONFIG = {
        "color" : BLUE_D,
        "secondary_color" : BLUE_E,
        "axes_color" : WHITE,
        "secondary_stroke_width" : 1,
        "x_radius": None,
        "y_radius": None,
        "x_unit_size" : 1,
        "y_unit_size" : 1,
        "center_point" : ORIGIN,
        "x_line_frequency" : 1,
        "y_line_frequency" : 1,
        "secondary_line_ratio" : 1,
        "written_coordinate_height" : 0.2,
        "propogate_style_to_family" : False,
    }
    
    def generate_points(self):
        if self.x_radius is None:
            center_to_edge = (SPACE_WIDTH + abs(self.center_point[0])) 
            self.x_radius = center_to_edge / self.x_unit_size
        if self.y_radius is None:
            center_to_edge = (SPACE_HEIGHT + abs(self.center_point[1])) 
            self.y_radius = center_to_edge / self.y_unit_size
        self.axes = VMobject()
        self.main_lines = VMobject()
        self.secondary_lines = VMobject()
        tuples = [
            (
                self.x_radius, 
                self.x_line_frequency, 
                self.y_radius*DOWN, 
                self.y_radius*UP,
                RIGHT
            ),
            (
                self.y_radius, 
                self.y_line_frequency, 
                self.x_radius*LEFT, 
                self.x_radius*RIGHT,
                UP,
            ),
        ]
        for radius, freq, start, end, unit in tuples:
            main_range = np.arange(0, radius, freq)
            step = freq/float(freq + self.secondary_line_ratio)
            for v in np.arange(0, radius, step):
                line1 = Line(start+v*unit, end+v*unit)
                line2 = Line(start-v*unit, end-v*unit)                
                if v == 0:
                    self.axes.add(line1)
                elif v in main_range:
                    self.main_lines.add(line1, line2)
                else:
                    self.secondary_lines.add(line1, line2)
        self.add(self.secondary_lines, self.main_lines, self.axes)
        self.stretch(self.x_unit_size, 0)
        self.stretch(self.y_unit_size, 1)
        self.shift(self.center_point)
        #Put x_axis before y_axis
        y_axis, x_axis = self.axes.split()
        self.axes = VMobject(x_axis, y_axis)

    def init_colors(self):
        VMobject.init_colors(self)
        self.axes.set_stroke(self.axes_color, self.stroke_width)
        self.main_lines.set_stroke(self.color, self.stroke_width)
        self.secondary_lines.set_stroke(
            self.secondary_color, self.secondary_stroke_width
        )
        return self

    def get_center_point(self):
        return self.coords_to_point(0, 0)

    def coords_to_point(self, x, y):
        x, y = np.array([x, y])
        result = self.axes.get_center()
        result += x*self.get_x_unit_size()*RIGHT
        result += y*self.get_y_unit_size()*UP
        return result

    def point_to_coords(self, point):
        new_point = point - self.axes.get_center()
        x = new_point[0]/self.get_x_unit_size()
        y = new_point[1]/self.get_y_unit_size()
        return x, y

    def get_x_unit_size(self):
        return self.axes.get_width() / (2.0*self.x_radius)

    def get_y_unit_size(self):
        return self.axes.get_height() / (2.0*self.y_radius)

    def get_coordinate_labels(self, x_vals = None, y_vals = None):
        result = []
        if x_vals == None and y_vals == None:
            x_vals = range(-int(self.x_radius), int(self.x_radius))
            y_vals = range(-int(self.y_radius), int(self.y_radius))
        for index, vals in enumerate([x_vals, y_vals]):
            num_pair = [0, 0]
            for val in vals:
                if val == 0:
                    continue
                num_pair[index] = val
                point = self.coords_to_point(*num_pair)
                num = TexMobject(str(val))
                num.add_background_rectangle()
                num.scale_to_fit_height(
                    self.written_coordinate_height
                )
                vect = DOWN if index == 0 else LEFT
                num.next_to(point, vect, buff = SMALL_BUFF)
                result.append(num)
        return result

    def get_axes(self):
        return self.axes

    def get_axis_labels(self, x_label = "x", y_label = "y"):
        x_axis, y_axis = self.get_axes().split()
        quads = [
            (x_axis, x_label, UP, RIGHT),
            (y_axis, y_label, RIGHT, UP),
        ]
        labels = VGroup()
        for axis, tex, vect, edge in quads:
            label = TexMobject(tex)
            label.add_background_rectangle()
            label.next_to(axis, vect)
            label.to_edge(edge)
            labels.add(label)
        self.axis_labels = labels
        return labels

    def add_coordinates(self, x_vals = None, y_vals = None):
        self.add(*self.get_coordinate_labels(x_vals, y_vals))
        return self

    def get_vector(self, coords, **kwargs):
        point = coords[0]*RIGHT + coords[1]*UP
        arrow = Arrow(ORIGIN, coords, **kwargs)
        return arrow

    def prepare_for_nonlinear_transform(self, num_inserted_anchor_points = 50):
        for mob in self.family_members_with_points():
            num_anchors = mob.get_num_anchor_points()
            if num_inserted_anchor_points > num_anchors:
                mob.insert_n_anchor_points(num_inserted_anchor_points-num_anchors)
                mob.make_smooth()
        return self
Beispiel #10
0
class PiCreature(SVGMobject):
    CONFIG = {
        "color" : BLUE_E,
        "stroke_width" : 0,
        "fill_opacity" : 1.0,
        "initial_scale_factor" : 0.01,
        "corner_scale_factor" : 0.75,
        "flip_at_start" : False,
        "is_looking_direction_purposeful" : False,
    }
    def __init__(self, mode = "plain", **kwargs):
        self.parts_named = False
        svg_file = os.path.join(
            PI_CREATURE_DIR, 
            "PiCreatures_%s.svg"%mode
        )
        digest_config(self, kwargs, locals())
        SVGMobject.__init__(self, svg_file, **kwargs)
        self.init_colors()
        if self.flip_at_start:
            self.flip()

    def name_parts(self):
        self.mouth = self.submobjects[MOUTH_INDEX]
        self.body = self.submobjects[BODY_INDEX]
        self.pupils = VMobject(*[
            self.submobjects[LEFT_PUPIL_INDEX],
            self.submobjects[RIGHT_PUPIL_INDEX]
        ])
        self.eyes = VMobject(*[
            self.submobjects[LEFT_EYE_INDEX],
            self.submobjects[RIGHT_EYE_INDEX]
        ])
        self.submobjects = []
        self.add(self.body, self.mouth, self.eyes, self.pupils)
        self.parts_named = True

    def init_colors(self):
        self.set_stroke(color = BLACK, width = self.stroke_width)
        if not self.parts_named:
            self.name_parts()
        self.mouth.set_fill(BLACK, opacity = 1)
        self.body.set_fill(self.color, opacity = 1)
        self.pupils.set_fill(BLACK, opacity = 1)
        self.eyes.set_fill(WHITE, opacity = 1)
        return self


    def highlight(self, color):
        self.body.set_fill(color)
        return self

    def move_to(self, destination):
        self.shift(destination-self.get_bottom())
        return self

    def change_mode(self, mode):
        curr_center = self.get_center()
        curr_height = self.get_height()
        should_be_flipped = self.is_flipped()        
        if self.is_looking_direction_purposeful:
            looking_direction = self.get_looking_direction()
        self.__init__(mode)
        self.scale_to_fit_height(curr_height)
        self.shift(curr_center)
        if should_be_flipped ^ self.is_flipped():
            self.flip()
        if self.is_looking_direction_purposeful:
            self.look(looking_direction)
        return self

    def look(self, direction):
        self.is_looking_direction_purposeful = True
        x, y = direction[:2]        
        for pupil, eye in zip(self.pupils.split(), self.eyes.split()):
            pupil.move_to(eye, aligned_edge = direction)
            #Some hacky nudging is required here
            if y > 0 and x != 0: # Look up and to a side
                nudge_size = pupil.get_height()/4.
                if x > 0: 
                    nudge = nudge_size*(DOWN+LEFT)
                else:
                    nudge = nudge_size*(DOWN+RIGHT)
                pupil.shift(nudge)
            elif y < 0:
                nudge_size = pupil.get_height()/8.
                pupil.shift(nudge_size*UP)
        return self


    def get_looking_direction(self):
        return np.sign(np.round(
            self.pupils.get_center() - self.eyes.get_center(),
            decimals = 2
        ))

    def is_flipped(self):
        return self.eyes.submobjects[0].get_center()[0] > \
               self.eyes.submobjects[1].get_center()[0]

    def blink(self):
        eye_bottom_y = self.eyes.get_bottom()[1]
        for mob in self.eyes, self.pupils:
            mob.apply_function(
                lambda p : [p[0], eye_bottom_y, p[2]]
            )
        return self

    def to_corner(self, vect = None):
        if vect is not None:
            SVGMobject.to_corner(self, vect)
        else:
            self.scale(self.corner_scale_factor)
            self.to_corner(DOWN+LEFT)
        return self

    def get_bubble(self, bubble_type = "thought", **kwargs):
        if bubble_type == "thought":
            bubble = ThoughtBubble(**kwargs)
        elif bubble_type == "speech":
            bubble = SpeechBubble(**kwargs)
        else:
            raise Exception("%s is an invalid bubble type"%bubble_type)
        bubble.pin_to(self)
        return bubble
Beispiel #11
0
 def get_center(self):
     result = VMobject.get_center(self)
     if hasattr(self, "center_offset"):
         result -= self.center_offset
     return result
Beispiel #12
0
class NumberPlane(VMobject):
    CONFIG = {
        "color" : BLUE_D,
        "secondary_color" : BLUE_E,
        "axes_color" : WHITE,
        "secondary_stroke_width" : 1,
        "x_radius": SPACE_WIDTH,
        "y_radius": SPACE_HEIGHT,
        "space_unit_to_x_unit" : 1,
        "space_unit_to_y_unit" : 1,
        "x_line_frequency" : 1,
        "y_line_frequency" : 1,
        "secondary_line_ratio" : 1,
        "written_coordinate_height" : 0.2,
        "written_coordinate_nudge" : 0.1*(DOWN+RIGHT),
        "num_pair_at_center" : (0, 0),
        "propogate_style_to_family" : False,
    }
    
    def generate_points(self):
        self.axes = VMobject()
        self.main_lines = VMobject()
        self.secondary_lines = VMobject()
        tuples = [
            (
                self.x_radius, 
                self.x_line_frequency, 
                self.y_radius*DOWN, 
                self.y_radius*UP,
                RIGHT
            ),
            (
                self.y_radius, 
                self.y_line_frequency, 
                self.x_radius*LEFT, 
                self.x_radius*RIGHT,
                UP,
            ),
        ]
        for radius, freq, start, end, unit in tuples:
            main_range = np.arange(0, radius, freq)
            step = freq/float(freq + self.secondary_line_ratio)
            for v in np.arange(0, radius, step):
                line1 = Line(start+v*unit, end+v*unit)
                line2 = Line(start-v*unit, end-v*unit)                
                if v == 0:
                    self.axes.add(line1)
                elif v in main_range:
                    self.main_lines.add(line1, line2)
                else:
                    self.secondary_lines.add(line1, line2)
        self.add(self.axes, self.main_lines, self.secondary_lines)
        self.stretch(self.space_unit_to_x_unit, 0)
        self.stretch(self.space_unit_to_y_unit, 1)
        #Put x_axis before y_axis
        y_axis, x_axis = self.axes.split()
        self.axes = VMobject(x_axis, y_axis)

    def init_colors(self):
        VMobject.init_colors(self)
        self.axes.set_stroke(self.axes_color, self.stroke_width)
        self.main_lines.set_stroke(self.color, self.stroke_width)
        self.secondary_lines.set_stroke(
            self.secondary_color, self.secondary_stroke_width
        )
        return self

    def get_center_point(self):
        return self.num_pair_to_point(self.num_pair_at_center)

    def num_pair_to_point(self, pair):
        pair = np.array(pair) + self.num_pair_at_center
        result = self.axes.get_center()
        result[0] += pair[0]*self.space_unit_to_x_unit
        result[1] += pair[1]*self.space_unit_to_y_unit
        return result

    def point_to_num_pair(self, point):
        new_point = point-self.get_center()
        center_x, center_y = self.num_pair_at_center
        x = center_x + point[0]/self.space_unit_to_x_unit
        y = center_y + point[1]/self.space_unit_to_y_unit
        return x, y

    def get_coordinate_labels(self, x_vals = None, y_vals = None):
        result = []
        if x_vals == None and y_vals == None:
            x_vals = range(-int(self.x_radius), int(self.x_radius))
            y_vals = range(-int(self.y_radius), int(self.y_radius))
        for index, vals in enumerate([x_vals, y_vals]):
            num_pair = [0, 0]
            for val in vals:
                num_pair[index] = val
                point = self.num_pair_to_point(num_pair)
                num = TexMobject(str(val))
                num.scale_to_fit_height(
                    self.written_coordinate_height
                )
                num.shift(
                    point-num.get_corner(UP+LEFT),
                    self.written_coordinate_nudge
                )
                result.append(num)
        return result

    def get_axes(self):
        return self.axes

    def get_axis_labels(self, x_label = "x", y_label = "y"):
        x_axis, y_axis = self.get_axes().split()
        x_label_mob = TexMobject(x_label)
        y_label_mob = TexMobject(y_label)
        x_label_mob.next_to(x_axis, DOWN)
        x_label_mob.to_edge(RIGHT)
        y_label_mob.next_to(y_axis, RIGHT)
        y_label_mob.to_edge(UP)
        return VMobject(x_label_mob, y_label_mob)


    def add_coordinates(self, x_vals = None, y_vals = None):
        self.add(*self.get_coordinate_labels(x_vals, y_vals))
        return self

    def get_vector(self, coords, **kwargs):
        point = coords[0]*RIGHT + coords[1]*UP
        arrow = Arrow(ORIGIN, coords, **kwargs)
        return arrow

    def prepare_for_nonlinear_transform(self, num_inserted_anchor_points = 50):
        for mob in self.family_members_with_points():
            num_anchors = mob.get_num_anchor_points()
            if num_inserted_anchor_points > num_anchors:
                mob.insert_n_anchor_points(num_inserted_anchor_points-num_anchors)
                mob.make_smooth()
        return self