Beispiel #1
0
 def show_maximizing_inputs(self, network):
     training_data, validation_data, test_data = load_data_wrapper()
     layer = 1
     n_neurons = DEFAULT_LAYER_SIZES[layer]
     groups = Group()
     for k in range(n_neurons):
         out = np.zeros(n_neurons)
         out[k] = 1
         in_vect = maximizing_input(network, layer, out)
         new_out = network.get_activation_of_all_layers(in_vect)[layer]
         group = Group(*map(MNistMobject, [in_vect, new_out]))
         group.arrange_submobjects(DOWN+RIGHT, SMALL_BUFF)
         groups.add(group)
     groups.arrange_submobjects_in_grid()
     groups.scale_to_fit_height(2*SPACE_HEIGHT - 1)
     self.add(groups)
Beispiel #2
0
 def get_set(self, network, test):
     test_in, test_out = test
     activations = network.get_activation_of_all_layers(test_in)
     group = Group(*map(MNistMobject, activations))
     group.arrange_submobjects(RIGHT, buff=LARGE_BUFF)
     return group
Beispiel #3
0
 def __init__(self, *mobjects, **kwargs):
     start = Group(*mobjects)
     target = Group(
         *[m1.copy().move_to(m2) for m1, m2 in adjascent_pairs(start)])
     Transform.__init__(self, start, target, **kwargs)
 def __init__(self, *continual_animations, **kwargs):
     digest_config(self, kwargs, locals())
     self.group = Group(*[ca.mobject for ca in continual_animations])
     ContinualAnimation.__init__(self, self.group, **kwargs)
Beispiel #5
0
 def __init__(self, *args, **kwargs):
     return Animation.__init__(self, Group(), *args, **kwargs)
Beispiel #6
0
    def __init__(self, *args, **kwargs):
        """
        Each arg will either be an animation, or an animation class 
        followed by its arguments (and potentially a dict for 
        configuration).
        For example, 
        Succession(
            ShowCreation(circle),
            Transform, circle, square,
            Transform, circle, triangle,
            ApplyMethod, circle.shift, 2*UP, {"run_time" : 2},
        )
        """
        animations = []
        state = {
            "animations" : animations,
            "curr_class" : None,
            "curr_class_args" : [],
            "curr_class_config" : {},
        }
        def invoke_curr_class(state):
            if state["curr_class"] is None:
                return
            anim = state["curr_class"](
                *state["curr_class_args"], 
                **state["curr_class_config"]
            )
            state["animations"].append(anim)
            anim.update(1)
            state["curr_class"] = None
            state["curr_class_args"] = []
            state["curr_class_config"] = {}

        for arg in args:
            if isinstance(arg, Animation):
                animations.append(arg)
                arg.update(1)
                invoke_curr_class(state)
            elif isinstance(arg, type) and issubclass(arg, Animation):
                invoke_curr_class(state)
                state["curr_class"] = arg
            elif isinstance(arg, dict):
                state["curr_class_config"] = arg
            else:
                state["curr_class_args"].append(arg)
        invoke_curr_class(state)
        for anim in animations:
            anim.update(0)

        animations = filter (lambda x : not(x.empty), animations)

        self.run_times = [anim.run_time for anim in animations]
        if "run_time" in kwargs:
            run_time = kwargs.pop("run_time")
            warnings.warn("Succession doesn't currently support explicit run_time.")
        run_time = sum(self.run_times)
        self.num_anims = len(animations)
        if self.num_anims == 0:
            self.empty = True
        self.animations = animations
        #Have to keep track of this run_time, because Scene.play
        #might very well mess with it.
        self.original_run_time = run_time

        # critical_alphas[i] is the start alpha of self.animations[i]
        # critical_alphas[i + 1] is the end alpha of self.animations[i]
        critical_times = np.concatenate(([0], np.cumsum(self.run_times)))
        self.critical_alphas = map (lambda x : np.true_divide(x, run_time), critical_times) if self.num_anims > 0 else [0.0]

        # self.scene_mobjects_at_time[i] is the scene's mobjects at start of self.animations[i]
        # self.scene_mobjects_at_time[i + 1] is the scene mobjects at end of self.animations[i]
        self.scene_mobjects_at_time = [None for i in range(self.num_anims + 1)]
        self.scene_mobjects_at_time[0] = Group()
        for i in range(self.num_anims):
            self.scene_mobjects_at_time[i + 1] = self.scene_mobjects_at_time[i].copy()
            self.animations[i].clean_up(self.scene_mobjects_at_time[i + 1])

        self.current_alpha = 0
        self.current_anim_index = 0 # If self.num_anims == 0, this is an invalid index, but so it goes
        if self.num_anims > 0:
            self.mobject = self.scene_mobjects_at_time[0]
            self.mobject.add(self.animations[0].mobject)
        else:
            self.mobject = Group()

        Animation.__init__(self, self.mobject, run_time = run_time, **kwargs)
Beispiel #7
0
class Succession(Animation):
    CONFIG = {
        "rate_func" : None,
    }
    def __init__(self, *args, **kwargs):
        """
        Each arg will either be an animation, or an animation class 
        followed by its arguments (and potentially a dict for 
        configuration).
        For example, 
        Succession(
            ShowCreation(circle),
            Transform, circle, square,
            Transform, circle, triangle,
            ApplyMethod, circle.shift, 2*UP, {"run_time" : 2},
        )
        """
        animations = []
        state = {
            "animations" : animations,
            "curr_class" : None,
            "curr_class_args" : [],
            "curr_class_config" : {},
        }
        def invoke_curr_class(state):
            if state["curr_class"] is None:
                return
            anim = state["curr_class"](
                *state["curr_class_args"], 
                **state["curr_class_config"]
            )
            state["animations"].append(anim)
            anim.update(1)
            state["curr_class"] = None
            state["curr_class_args"] = []
            state["curr_class_config"] = {}

        for arg in args:
            if isinstance(arg, Animation):
                animations.append(arg)
                arg.update(1)
                invoke_curr_class(state)
            elif isinstance(arg, type) and issubclass(arg, Animation):
                invoke_curr_class(state)
                state["curr_class"] = arg
            elif isinstance(arg, dict):
                state["curr_class_config"] = arg
            else:
                state["curr_class_args"].append(arg)
        invoke_curr_class(state)
        for anim in animations:
            anim.update(0)

        animations = filter (lambda x : not(x.empty), animations)

        self.run_times = [anim.run_time for anim in animations]
        if "run_time" in kwargs:
            run_time = kwargs.pop("run_time")
            warnings.warn("Succession doesn't currently support explicit run_time.")
        run_time = sum(self.run_times)
        self.num_anims = len(animations)
        if self.num_anims == 0:
            self.empty = True
        self.animations = animations
        #Have to keep track of this run_time, because Scene.play
        #might very well mess with it.
        self.original_run_time = run_time

        # critical_alphas[i] is the start alpha of self.animations[i]
        # critical_alphas[i + 1] is the end alpha of self.animations[i]
        critical_times = np.concatenate(([0], np.cumsum(self.run_times)))
        self.critical_alphas = map (lambda x : np.true_divide(x, run_time), critical_times) if self.num_anims > 0 else [0.0]

        # self.scene_mobjects_at_time[i] is the scene's mobjects at start of self.animations[i]
        # self.scene_mobjects_at_time[i + 1] is the scene mobjects at end of self.animations[i]
        self.scene_mobjects_at_time = [None for i in range(self.num_anims + 1)]
        self.scene_mobjects_at_time[0] = Group()
        for i in range(self.num_anims):
            self.scene_mobjects_at_time[i + 1] = self.scene_mobjects_at_time[i].copy()
            self.animations[i].clean_up(self.scene_mobjects_at_time[i + 1])

        self.current_alpha = 0
        self.current_anim_index = 0 # If self.num_anims == 0, this is an invalid index, but so it goes
        if self.num_anims > 0:
            self.mobject = self.scene_mobjects_at_time[0]
            self.mobject.add(self.animations[0].mobject)
        else:
            self.mobject = Group()

        Animation.__init__(self, self.mobject, run_time = run_time, **kwargs)

    # Beware: This does NOT take care of calling update(0) on the subanimation.
    # This was important to avoid a pernicious possibility in which subanimations were called
    # with update twice, which could in turn call a sub-Succession with update four times,
    # continuing exponentially.
    def jump_to_start_of_anim(self, index):
        if index != self.current_anim_index:
            self.mobject.remove(*self.mobject.submobjects) # Should probably have a cleaner "remove_all" method...
            self.mobject.add(*self.scene_mobjects_at_time[index].submobjects)
            self.mobject.add(self.animations[index].mobject)

        for i in range(index):
            self.animations[i].update(1)

        self.current_anim_index = index
        self.current_alpha = self.critical_alphas[index]

    def update_mobject(self, alpha):
        if self.num_anims == 0:
            # This probably doesn't matter for anything, but just in case,
            # we want it in the future, we set current_alpha even in this case
            self.current_alpha = alpha
            return

        gt_alpha_iter = it.ifilter(
            lambda i : self.critical_alphas[i+1] >= alpha, 
            range(self.num_anims)
        )
        i = next(gt_alpha_iter, None)
        if i == None:
            # In this case, we assume what is happening is that alpha is 1.0, 
            # but that rounding error is causing us to overshoot the end of
            # self.critical_alphas (which is also 1.0)
            if not abs(alpha - 1) < 0.001:
                warnings.warn(
                    "Rounding error not near alpha=1 in Succession.update_mobject," + \
                    "instead alpha = %f"%alpha
                )
                print self.critical_alphas, alpha
            i = self.num_anims - 1

        # At this point, we should have self.critical_alphas[i] <= alpha <= self.critical_alphas[i +1]

        self.jump_to_start_of_anim(i)
        sub_alpha = inverse_interpolate(
            self.critical_alphas[i], 
            self.critical_alphas[i + 1], 
            alpha
        )
        self.animations[i].update(sub_alpha)
        self.current_alpha = alpha

    def clean_up(self, *args, **kwargs):
        # We clean up as though we've played ALL animations, even if
        # clean_up is called in middle of things
        for anim in self.animations:
            anim.clean_up(*args, **kwargs)
Beispiel #8
0
    def __init__(self, *args, **kwargs):
        """
        Each arg will either be an animation, or an animation class 
        followed by its arguments (and potentially a dict for 
        configuration).

        For example, 
        Succession(
            ShowCreation(circle),
            Transform, circle, square,
            Transform, circle, triangle,
            ApplyMethod, circle.shift, 2*UP, {"run_time" : 2},
        )
        """
        animations = []
        state = {
            "animations": animations,
            "curr_class": None,
            "curr_class_args": [],
            "curr_class_config": {},
        }

        def invoke_curr_class(state):
            if state["curr_class"] is None:
                return
            anim = state["curr_class"](*state["curr_class_args"],
                                       **state["curr_class_config"])
            state["animations"].append(anim)
            anim.update(1)
            state["curr_class"] = None
            state["curr_class_args"] = []
            state["curr_class_config"] = {}

        for arg in args:
            if isinstance(arg, Animation):
                animations.append(arg)
                arg.update(1)
                invoke_curr_class(state)
            elif isinstance(arg, type) and issubclass(arg, Animation):
                invoke_curr_class(state)
                state["curr_class"] = arg
            elif isinstance(arg, dict):
                state["curr_class_config"] = arg
            else:
                state["curr_class_args"].append(arg)
        invoke_curr_class(state)
        for anim in animations:
            anim.update(0)

        self.run_times = [anim.run_time for anim in animations]
        if "run_time" in kwargs:
            run_time = kwargs.pop("run_time")
        else:
            run_time = sum(self.run_times)
        self.num_anims = len(animations)
        self.animations = animations
        self.last_index = 0
        #Have to keep track of this run_time, because Scene.play
        #might very well mess with it.
        self.original_run_time = run_time

        # critical_alphas[i] is the start alpha of self.animations[i]
        # critical_alphas[i + 1] is the end alpha of self.animations[i]
        critical_times = np.concatenate(([0], np.cumsum(self.run_times)))
        self.critical_alphas = map(lambda x: np.true_divide(x, run_time),
                                   critical_times)

        mobject = Group(*[anim.mobject for anim in self.animations])
        Animation.__init__(self, mobject, run_time=run_time, **kwargs)