def __init__(self, model_name: str, args):
     self.model_name = model_name
     self.args = args
     self.encoder = Encoder(self.args.add_noise).to(self.args.device)
     self.decoder = Decoder(self.args.upsample_mode).to(self.args.device)
     self.pretrainDataset = None
     self.pretrainDataloader = None
     self.pretrainOptimizer = None
     self.pretrainScheduler = None
     self.RHO_tensor = None
     self.pretrain_batch_cnt = 0
     self.writer = None
     self.svmDataset = None
     self.svmDataloader = None
     self.testDataset = None
     self.testDataloader = None
     self.svm = SVC(C=self.args.svm_c,
                    kernel=self.args.svm_ker,
                    verbose=True,
                    max_iter=self.args.svm_max_iter)
     self.resnet = Resnet(use_pretrained=True,
                          num_classes=self.args.classes,
                          resnet_depth=self.args.resnet_depth,
                          dropout=self.args.resnet_dropout).to(
                              self.args.device)
     self.resnetOptimizer = None
     self.resnetScheduler = None
     self.resnetLossFn = None
Beispiel #2
0
    def __init__(  # TODO move parameters to config file
            self,
            pset,
            batch_size=64,
            max_size=100,
            vocab_inp_size=32,
            vocab_tar_size=32,
            embedding_dim=64,
            units=128,
            hidden_size=128,
            alpha=0.1,
            epochs=200,
            epoch_decay=1,
            min_epochs=10,
            verbose=True):
        self.alpha = alpha
        self.batch_size = batch_size
        self.max_size = max_size
        self.epochs = epochs
        self.epoch_decay = epoch_decay
        self.min_epochs = min_epochs
        self.train_steps = 0

        self.verbose = verbose

        self.enc = Encoder(vocab_inp_size, embedding_dim, units, batch_size)
        self.dec = Decoder(vocab_inp_size, vocab_tar_size, embedding_dim,
                           units, batch_size)
        self.surrogate = Surrogate(hidden_size)
        self.population = Population(pset, max_size, batch_size)
        self.prob = 0.5

        self.optimizer = tf.keras.optimizers.Adam()
        self.loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=False, reduction='none')
Beispiel #3
0
    def __init__(self, config):
        super(Model, self).__init__()
        self.config = config

        # 定义嵌入层
        self.embedding = Embedding(config.num_vocab,  # 词汇表大小
                                   config.embedding_size,  # 嵌入层维度
                                   config.pad_id,  # pad_id
                                   config.dropout)

        # post编码器
        self.post_encoder = Encoder(config.post_encoder_cell_type,  # rnn类型
                                    config.embedding_size,  # 输入维度
                                    config.post_encoder_output_size,  # 输出维度
                                    config.post_encoder_num_layers,  # rnn层数
                                    config.post_encoder_bidirectional,  # 是否双向
                                    config.dropout)  # dropout概率

        # response编码器
        self.response_encoder = Encoder(config.response_encoder_cell_type,
                                        config.embedding_size,  # 输入维度
                                        config.response_encoder_output_size,  # 输出维度
                                        config.response_encoder_num_layers,  # rnn层数
                                        config.response_encoder_bidirectional,  # 是否双向
                                        config.dropout)  # dropout概率

        # 先验网络
        self.prior_net = PriorNet(config.post_encoder_output_size,  # post输入维度
                                  config.latent_size,  # 潜变量维度
                                  config.dims_prior)  # 隐藏层维度

        # 识别网络
        self.recognize_net = RecognizeNet(config.post_encoder_output_size,  # post输入维度
                                          config.response_encoder_output_size,  # response输入维度
                                          config.latent_size,  # 潜变量维度
                                          config.dims_recognize)  # 隐藏层维度

        # 初始化解码器状态
        self.prepare_state = PrepareState(config.post_encoder_output_size+config.latent_size,
                                          config.decoder_cell_type,
                                          config.decoder_output_size,
                                          config.decoder_num_layers)

        # 解码器
        self.decoder = Decoder(config.decoder_cell_type,  # rnn类型
                               config.embedding_size,  # 输入维度
                               config.decoder_output_size,  # 输出维度
                               config.decoder_num_layers,  # rnn层数
                               config.dropout)  # dropout概率

        # 输出层
        self.projector = nn.Sequential(
            nn.Linear(config.decoder_output_size, config.num_vocab),
            nn.Softmax(-1)
        )
Beispiel #4
0
    def __init__(self, opt, vocabs):
        super(S2SModel, self).__init__()

        self.opt = opt
        self.vocabs = vocabs
        self.encoder = Encoder(vocabs, opt)
        self.decoder = Decoder(vocabs, opt)
        self.generator = ProdGenerator(self.opt.decoder_rnn_size, vocabs,
                                       self.opt)
Beispiel #5
0
 def __init__(self,
              args,
              vocab,
              n_dim,
              image_dim,
              layers,
              dropout,
              num_choice=5):
     super().__init__()
     print("Model name: DA, 1 layer, fixed subspaces")
     self.vocab = vocab
     self.encoder = Encoder(args, vocab, n_dim, image_dim, layers, dropout,
                            num_choice).cuda()
     self.decoder = Decoder(args, vocab, n_dim, image_dim, layers, dropout,
                            num_choice).cuda()
Beispiel #6
0
    def __init__(self,
                 num_layers,
                 d_model,
                 num_heads,
                 dff,
                 input_vocab_size,
                 target_vocab_size,
                 dropout=0.1):
        super(Transformer, self).__init__()

        self.encoder = Encoder(num_layers, d_model, num_heads, dff,
                               input_vocab_size, dropout)

        self.decoder = Decoder(num_layers, d_model, num_heads, dff,
                               target_vocab_size, dropout)

        self.final_layer = tf.keras.layers.Dense(target_vocab_size)
Beispiel #7
0
    def __init__(self,
                 num_encoder_layers: int = 6,
                 num_decoder_layers: int = 6,
                 dim_embedding: int = 512,
                 num_heads: int = 6,
                 dim_feedfordward: int = 512,
                 dropout: float = 0.1,
                 activation: nn.Module = nn.ReLU()):
        super().__init__()
        self.encoder = Encoder(num_layers=num_encoder_layers,
                               dim_embedding=dim_embedding,
                               num_heads=num_heads,
                               dim_feedfordward=dim_feedfordward,
                               dropout=dropout)

        self.decoder = Decoder(num_layers=num_decoder_layers,
                               dim_embedding=dim_embedding,
                               num_heads=num_heads,
                               dim_feedfordward=dim_feedfordward,
                               dropout=dropout)
        self.criterion = nn.CrossEntropyLoss()
    def __init__(self):
        super(Model, self).__init__()

        self.encoder = Encoder()
        self.decoder = Decoder()
        self.embeds = nn.Embedding(config.vocab_size, config.emb_dim)
        init_wt.init_wt_normal(self.embeds.weight)

        self.encoder = get_cuda(self.encoder)
        self.decoder = get_cuda(self.decoder)
        self.embeds = get_cuda(self.embeds)


# if __name__ == '__main__':
#
#     my_model = Model()
#     my_model_paramters = my_model.parameters()
#
#     print(my_model_paramters)
#     my_model_paramters_group = list(my_model_paramters)
#     print(my_model_paramters_group)
Beispiel #9
0
 def __init__(self,
              args,
              vocab,
              n_dim,
              image_dim,
              layers,
              dropout,
              num_choice=5):
     super().__init__()
     print("Model name: DA")
     self.vocab = vocab
     self.encoder = Encoder(args, vocab, n_dim, image_dim, layers, dropout,
                            num_choice).cuda()
     #self.encoder = TransformerEncoder(args, vocab, n_dim, image_dim, layers, dropout, num_choice).cuda()
     #self.encoder = DAEncoder(args, vocab, n_dim, image_dim, layers, dropout, num_choice).cuda()
     #self.encoder = MHEncoder(args, vocab, n_dim, image_dim, layers, dropout, num_choice).cuda()
     ##self.encoder = HierarchicalDA(args, vocab, n_dim, image_dim, layers, dropout, num_choice).cuda()
     #self.decoder = Disc(args, vocab, n_dim, image_dim, layers, dropout, num_choice)
     #self.decoder = SumDisc(args, vocab, n_dim, image_dim, layers, dropout, num_choice)
     self.decoder = Decoder(args, vocab, n_dim, image_dim, layers, dropout,
                            num_choice).cuda()
Beispiel #10
0
def make_model(src_vocab,
               tar_vocab,
               N=6,
               d_model=512,
               d_ff=2014,
               h=8,
               dropout=0.1):
    c = copy.deepcopy
    attn = MultiHeadedAttention(h, d_model)
    ff = PositionwiseFeedForward(d_model, d_ff, dropout)
    position = PositionalEncoding(d_model, dropout)
    model = GeneralEncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N),
        nn.Sequential(Embedding(d_model, src_vocab), c(position)),
        nn.Sequential(Embedding(d_model, tar_vocab), c(position)),
        Generator(d_model, tar_vocab))

    # 随机初始化参数,这非常重要
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform_(p)
    return model
Beispiel #11
0
                                            transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset,
                                          batch_size=256,
                                          shuffle=True,
                                          num_workers=2)

testset = torchvision.datasets.ImageFolder(root='./data/Test',
                                           transform=transform_test)
testloader = torch.utils.data.DataLoader(testset,
                                         batch_size=200,
                                         shuffle=False,
                                         num_workers=2)

# Mode
print('==> Building model..')
encoder = Encoder(mask=mask)
decoder = Decoder(mask=mask)
classifier = Classifier()
encoder = encoder.to(device)
decoder = decoder.to(device)
classifier = classifier.to(device)
if device == 'cuda':
    cudnn.benchmark = True
if args.resume:
    # Load checkpoint.
    print('==> Resuming from checkpoint..')
    assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
    checkpoint = torch.load('./checkpoint/ckpt_' + codir + '.t7')
    encoder.load_state_dict(checkpoint['encoder'])
    decoder.load_state_dict(checkpoint['decoder'])
    classifier.load_state_dict(checkpoint['classifier'])
Beispiel #12
0
def main():
    # parameters
    learning_rate = 0.01
    num_epochs = 50
    batch_size = 250
    feature_size = 2048
    test_index = 2

    # create the save log file
    print("Create the directory")
    if not os.path.exists("./save"):
        os.makedirs("./save")
    if not os.path.exists("./logfile"):
        os.makedirs("./logfile")
    if not os.path.exists("./logfile/MTL"):
        os.makedirs("./logfile/MTL")

    # load my Dataset
    type = ["infograph", "quickdraw", "sketch", "real", "test"]
    print("training set : %s ,%s, %s" % (type[0], type[1], type[3]))
    print("testing set : %s" % (type[2]))
    inf_train_dataset = Dataset.Dataset(mode="train", type=type[0])
    inf_train_loader = DataLoader(inf_train_dataset,
                                  batch_size=batch_size,
                                  shuffle=True,
                                  num_workers=1)
    qdr_train_dataset = Dataset.Dataset(mode="train", type=type[1])
    qdr_train_loader = DataLoader(qdr_train_dataset,
                                  batch_size=batch_size,
                                  shuffle=True,
                                  num_workers=1)
    skt_train_dataset = Dataset.Dataset(mode="train", type=type[2])
    skt_train_loader = DataLoader(skt_train_dataset,
                                  batch_size=batch_size,
                                  shuffle=True,
                                  num_workers=1)
    rel_train_dataset = Dataset.Dataset(mode="train", type=type[3])
    rel_train_loader = DataLoader(rel_train_dataset,
                                  batch_size=batch_size,
                                  shuffle=True,
                                  num_workers=1)

    test_dataset = Dataset.Dataset(mode="test", type=type[0])
    test_loader = DataLoader(test_dataset,
                             batch_size=batch_size,
                             shuffle=True,
                             num_workers=1)

    print('the source dataset has %d size.' % (len(inf_train_dataset)))
    print('the target dataset has %d size.' % (len(test_dataset)))
    print('the batch_size is %d' % (batch_size))

    # Pre-train models
    encoder = Encoder()
    classifier = Classifier(feature_size)
    domain_classifier = Domain_classifier(feature_size, number_of_domain)

    # GPU enable
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    print('Device used:', device)
    if torch.cuda.is_available():
        encoder = encoder.to(device)
        domain_classifier = domain_classifier.to(device)
        classifier = classifier.to(device)

    # setup optimizer
    optimizer_encoder = optim.Adam(encoder.parameters(),
                                   weight_decay=1e-4,
                                   lr=learning_rate)
    optimizer_domain_classifier = optim.Adam(domain_classifier.parameters(),
                                             weight_decay=1e-4,
                                             lr=learning_rate)
    optimizer_classifier = optim.Adam(classifier.parameters(),
                                      weight_decay=1e-4,
                                      lr=learning_rate)

    print("Starting training...")

    for epoch in range(num_epochs):
        print("Epoch:", epoch + 1)

        train_loader = [
            inf_train_loader, qdr_train_loader, skt_train_loader,
            rel_train_loader
        ]
        domain_labels = torch.LongTensor([[0 for i in range(batch_size)],
                                          [1 for i in range(batch_size)],
                                          [2 for i in range(batch_size)],
                                          [3 for i in range(batch_size)]])

        mtl_criterion = nn.CrossEntropyLoss()
        moe_criterion = nn.CrossEntropyLoss()

        encoder.train()
        domain_classifier.train()
        classifier.train()

        epoch_D_loss = 0.0
        epoch_C_loss = 0.0
        sum_trg_acc = 0.0
        sum_label_acc = 0.0
        sum_test_acc = 0.0

        for index, (inf, qdr, skt, rel, test) in enumerate(
                zip(train_loader[0], train_loader[1], train_loader[2],
                    train_loader[3], test_loader)):

            optimizer_encoder.zero_grad()
            optimizer_classifier.zero_grad()
            optimizer_domain_classifier.zero_grad()

            # colculate the lambda_
            p = (index + len(train_loader[0]) * epoch) / (
                len(train_loader[0]) * num_epochs)
            lambda_ = 2.0 / (1. + np.exp(-10 * p)) - 1.0

            s1_imgs, s1_labels = inf
            s2_imgs, s2_labels = qdr
            s3_imgs, s3_labels = rel
            t1_imgs, _ = skt
            s1_imgs = Variable(s1_imgs).to(device)
            s1_labels = Variable(s1_labels).to(device)
            s2_imgs = Variable(s2_imgs).to(device)
            s2_labels = Variable(s2_labels).to(device)
            s3_imgs = Variable(s3_imgs).to(device)
            s3_labels = Variable(s3_labels).to(device)
            t1_imgs = Variable(t1_imgs).to(device)

            s1_feature = encoder(s1_imgs)
            #t1_feature = encoder(t1_imgs)

            # Testing
            test_imgs, test_labels = test
            test_imgs = Variable(test_imgs).to(device)
            test_labels = Variable(test_labels).to(device)
            test_feature = encoder(test_imgs)
            test_output = classifier(test_feature)
            test_preds = test_output.argmax(1).cpu()
            test_acc = np.mean((test_preds == test_labels.cpu()).numpy())

            # Classifier network
            s1_output = classifier(s1_feature)

            s1_preds = s1_output.argmax(1).cpu()

            s1_acc = np.mean((s1_preds == s1_labels.cpu()).numpy())
            s1_c_loss = mtl_criterion(s1_output, s1_labels)
            C_loss = s1_c_loss

            # Domain_classifier network with source domain
            #domain_labels = Variable(domain_labels).to(device)
            #s1_domain_output = domain_classifier(s1_feature,lambda_)

            #s1_domain_preds = s1_domain_output.argmax(1).cpu()
            #if index == 10:
            #    print(s1_domain_preds)
            #s1_domain_acc = np.mean((s1_domain_preds == 0).numpy())
            #print(s1_domain_output.shape)
            #print(s1_domain_output[0])
            #s1_d_loss = moe_criterion(s1_domain_output,domain_labels[0])
            #D_loss_src = s1_d_loss
            #print(D_loss_src.item())

            # Domain_classifier network with target domain
            #t1_domain_output = domain_classifier(t1_feature,lambda_)
            #t1_domain_preds = t1_domain_output.argmax(1).cpu()
            #t1_domain_acc = np.mean((t1_domain_preds == 3).numpy())
            #t1_d_loss = moe_criterion(t1_domain_output,domain_labels[3])

            #D_loss = D_loss_src + t1_d_loss
            loss = C_loss
            D_loss = 0
            #epoch_D_loss += D_loss.item()
            epoch_C_loss += C_loss.item()
            #sum_trg_acc += t1_domain_acc
            #D_src_acc = (s1_domain_acc + s2_domain_acc + s3_domain_acc)/3.

            loss.backward()
            optimizer_encoder.step()
            optimizer_classifier.step()
            optimizer_domain_classifier.step()
            if (index + 1) % 10 == 0:
                print(
                    'Iter [%d/%d] loss %.4f , D_loss %.4f ,Acc %.4f  ,Test Acc: %.4f'
                    % (index + 1, len(train_loader[0]), loss.item(), D_loss,
                       s1_acc, test_acc))

        test_acc = 0.
        test_loss = 0.
        encoder.eval()
        domain_classifier.eval()
        classifier.eval()

        for index, (imgs, labels) in enumerate(test_loader):
            output_list = []
            loss_mtl = []
            imgs = Variable(imgs).to(device)
            labels = Variable(labels).to(device)
            hidden = encoder(imgs)
            output = classifier(hidden)
            preds = output.argmax(1).cpu()
            s1_acc = np.mean((preds == labels.cpu()).numpy())
            """
            for sthi in classifiers:
                output = sthi(hidden)
                output_list.append(output.cpu())
                loss = mtl_criterion(output, labels)
                loss_mtl.append(loss)


            output = torch.FloatTensor(np.array(output_list).sum(0))
            preds = output.argmax(1).cpu()
            s1_preds = output_list[0].argmax(1).cpu()
            s2_preds = output_list[1].argmax(1).cpu()
            s3_preds = output_list[2].argmax(1).cpu()
            acc = np.mean((preds == labels.cpu()).numpy())
            s1_acc = np.mean((s1_preds == labels.cpu()).numpy())
            s2_acc = np.mean((s2_preds == labels.cpu()).numpy())
            s3_acc = np.mean((s3_preds == labels.cpu()).numpy())
            if index == 0:
                print(acc)
            loss_mtl = sum(loss_mtl)
            loss = loss_mtl
            test_acc += acc
            test_loss += loss.item()
            """
        #print('Testing: loss %.4f,Acc %.4f ,s1 %.4f,s2 %.4f,s3 %.4f' %(test_loss/len(test_loader),test_acc/len(test_loader),s1_acc,s2_acc,s3_acc))

    return 0
Beispiel #13
0
    return tf.reduce_mean(loss_)


def main():
    pass


if __name__ == "__main__":
    BATCH_SIZE = 64
    vocab_inp_size = 32
    vocab_tar_size = 32
    embedding_dim = 64
    units = 128

    # Encoder
    encoder = Encoder(vocab_inp_size, embedding_dim, units, BATCH_SIZE)
    # Decoder
    decoder = Decoder(vocab_tar_size, embedding_dim, units, BATCH_SIZE)

    optimizer = tf.keras.optimizers.Adam()
    loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
        from_logits=True, reduction='none')

    @tf.function
    def train_step(inp, targ, enc_hidden, enc_cell):
        loss = 0

        with tf.GradientTape() as tape:
            enc_output, enc_hidden, enc_cell = encoder(inp,
                                                       [enc_hidden, enc_cell])
class Instructor:
    def __init__(self, model_name: str, args):
        self.model_name = model_name
        self.args = args
        self.encoder = Encoder(self.args.add_noise).to(self.args.device)
        self.decoder = Decoder(self.args.upsample_mode).to(self.args.device)
        self.pretrainDataset = None
        self.pretrainDataloader = None
        self.pretrainOptimizer = None
        self.pretrainScheduler = None
        self.RHO_tensor = None
        self.pretrain_batch_cnt = 0
        self.writer = None
        self.svmDataset = None
        self.svmDataloader = None
        self.testDataset = None
        self.testDataloader = None
        self.svm = SVC(C=self.args.svm_c,
                       kernel=self.args.svm_ker,
                       verbose=True,
                       max_iter=self.args.svm_max_iter)
        self.resnet = Resnet(use_pretrained=True,
                             num_classes=self.args.classes,
                             resnet_depth=self.args.resnet_depth,
                             dropout=self.args.resnet_dropout).to(
                                 self.args.device)
        self.resnetOptimizer = None
        self.resnetScheduler = None
        self.resnetLossFn = None

    def _load_data_by_label(self, label: str) -> list:
        ret = []
        LABEL_PATH = os.path.join(self.args.TRAIN_PATH, label)
        for dir_path, _, file_list in os.walk(LABEL_PATH, topdown=False):
            for file_name in file_list:
                file_path = os.path.join(dir_path, file_name)
                img_np = imread(file_path)
                img = img_np.copy()
                img = img.tolist()
                ret.append(img)
        return ret

    def _load_all_data(self):
        all_data = []
        all_labels = []
        for label_id in range(0, self.args.classes):
            expression = LabelEnum(label_id)
            sub_data = self._load_data_by_label(expression.name)
            sub_labels = [label_id] * len(sub_data)
            all_data.extend(sub_data)
            all_labels.extend(sub_labels)
        return all_data, all_labels

    def _load_test_data(self):
        file_map = pd.read_csv(
            os.path.join(self.args.RAW_PATH, 'submission.csv'))
        test_data = []
        img_names = []
        for file_name in file_map['file_name']:
            file_path = os.path.join(self.args.TEST_PATH, file_name)
            img_np = imread(file_path)
            img = img_np.copy()
            img = img.tolist()
            test_data.append(img)
            img_names.append(file_name)
        return test_data, img_names

    def trainAutoEncoder(self):
        self.writer = SummaryWriter(
            os.path.join(self.args.LOG_PATH, self.model_name))
        all_data, all_labels = self._load_all_data()
        self.pretrainDataset = FERDataset(all_data,
                                          labels=all_labels,
                                          args=self.args)
        self.pretrainDataloader = DataLoader(dataset=self.pretrainDataset,
                                             batch_size=self.args.batch_size,
                                             shuffle=True,
                                             num_workers=self.args.num_workers)
        self.pretrainOptimizer = torch.optim.Adam([{
            'params':
            self.encoder.parameters(),
            'lr':
            self.args.pretrain_lr
        }, {
            'params':
            self.decoder.parameters(),
            'lr':
            self.args.pretrain_lr
        }])
        tot_steps = math.ceil(
            len(self.pretrainDataloader) /
            self.args.cumul_batch) * self.args.epochs
        self.pretrainScheduler = get_linear_schedule_with_warmup(
            self.pretrainOptimizer,
            num_warmup_steps=0,
            num_training_steps=tot_steps)
        self.RHO_tensor = torch.tensor(
            [self.args.rho for _ in range(self.args.embed_dim)],
            dtype=torch.float).unsqueeze(0).to(self.args.device)
        epochs = self.args.epochs
        for epoch in range(1, epochs + 1):
            print()
            print(
                "================ AutoEncoder Training Epoch {:}/{:} ================"
                .format(epoch, epochs))
            print(" ---- Start training ------>")
            self.epochTrainAutoEncoder(epoch)
            print()
        self.writer.close()

    def epochTrainAutoEncoder(self, epoch):
        self.encoder.train()
        self.decoder.train()

        cumul_loss = 0
        cumul_steps = 0
        cumul_samples = 0

        self.pretrainOptimizer.zero_grad()
        cumulative_batch = 0

        for idx, (images, labels) in enumerate(tqdm(self.pretrainDataloader)):
            batch_size = images.shape[0]
            images, labels = images.to(self.args.device), labels.to(
                self.args.device)

            embeds = self.encoder(images)
            outputs = self.decoder(embeds)

            loss = torch.nn.functional.mse_loss(outputs, images)
            if self.args.use_sparse:
                rho_hat = torch.mean(embeds, dim=0, keepdim=True)
                sparse_penalty = self.args.regulizer_weight * torch.nn.functional.kl_div(
                    input=torch.nn.functional.log_softmax(rho_hat, dim=-1),
                    target=torch.nn.functional.softmax(self.RHO_tensor,
                                                       dim=-1))
                loss = loss + sparse_penalty

            loss_each = loss / self.args.cumul_batch
            loss_each.backward()

            cumulative_batch += 1
            cumul_steps += 1
            cumul_loss += loss.detach().cpu().item() * batch_size
            cumul_samples += batch_size

            if cumulative_batch >= self.args.cumul_batch:
                torch.nn.utils.clip_grad_norm_(self.encoder.parameters(),
                                               max_norm=self.args.max_norm)
                torch.nn.utils.clip_grad_norm_(self.decoder.parameters(),
                                               max_norm=self.args.max_norm)
                self.pretrainOptimizer.step()
                self.pretrainScheduler.step()
                self.pretrainOptimizer.zero_grad()
                cumulative_batch = 0

            if cumul_steps >= self.args.disp_period or idx + 1 == len(
                    self.pretrainDataloader):
                print(" -> cumul_steps={:} loss={:}".format(
                    cumul_steps, cumul_loss / cumul_samples))
                self.pretrain_batch_cnt += 1
                self.writer.add_scalar('batch-loss',
                                       cumul_loss / cumul_samples,
                                       global_step=self.pretrain_batch_cnt)
                self.writer.add_scalar('encoder_lr',
                                       self.pretrainOptimizer.state_dict()
                                       ['param_groups'][0]['lr'],
                                       global_step=self.pretrain_batch_cnt)
                self.writer.add_scalar('decoder_lr',
                                       self.pretrainOptimizer.state_dict()
                                       ['param_groups'][1]['lr'],
                                       global_step=self.pretrain_batch_cnt)
                cumul_steps = 0
                cumul_loss = 0
                cumul_samples = 0

        self.saveAutoEncoder(epoch)

    def saveAutoEncoder(self, epoch):
        encoderPath = os.path.join(
            self.args.CKPT_PATH,
            self.model_name + "--Encoder" + "--EPOCH-{:}".format(epoch))
        decoderPath = os.path.join(
            self.args.CKPT_PATH,
            self.model_name + "--Decoder" + "--EPOCH-{:}".format(epoch))
        print("-----------------------------------------------")
        print("  -> Saving AutoEncoder {:} ......".format(self.model_name))
        torch.save(self.encoder.state_dict(), encoderPath)
        torch.save(self.decoder.state_dict(), decoderPath)
        print("  -> Successfully saved AutoEncoder.")
        print("-----------------------------------------------")

    def generateAutoEncoderTestResultSamples(self, sample_cnt):
        self.encoder.eval()
        self.decoder.eval()
        print('  -> Generating samples with AutoEncoder ...')
        save_path = os.path.join(self.args.SAMPLE_PATH, self.model_name)
        if not os.path.exists(save_path):
            os.mkdir(save_path)
        with torch.no_grad():
            for dir_path, _, file_list in os.walk(self.args.TEST_PATH,
                                                  topdown=False):
                sample_file_list = random.choices(file_list, k=sample_cnt)
                for file_name in sample_file_list:
                    file_path = os.path.join(dir_path, file_name)
                    img_np = imread(file_path)
                    img = img_np.copy()
                    img = ToTensor()(img)
                    img = img.reshape(1, 1, 48, 48)
                    img = img.to(self.args.device)
                    embed = self.encoder(img)
                    out = self.decoder(embed).cpu()
                    out = out.reshape(1, 48, 48)
                    out_img = ToPILImage()(out)
                    out_img.save(os.path.join(save_path, file_name))
        print('  -> Done sampling from AutoEncoder with test pictures.')

    def loadAutoEncoder(self, epoch):
        encoderPath = os.path.join(
            self.args.CKPT_PATH,
            self.model_name + "--Encoder" + "--EPOCH-{:}".format(epoch))
        decoderPath = os.path.join(
            self.args.CKPT_PATH,
            self.model_name + "--Decoder" + "--EPOCH-{:}".format(epoch))
        print("-----------------------------------------------")
        print("  -> Loading AutoEncoder {:} ......".format(self.model_name))
        self.encoder.load_state_dict(torch.load(encoderPath))
        self.decoder.load_state_dict(torch.load(decoderPath))
        print("  -> Successfully loaded AutoEncoder.")
        print("-----------------------------------------------")

    def generateExtractedFeatures(
            self, data: torch.FloatTensor) -> torch.FloatTensor:
        """
        :param data: (batch, channel, l, w)
        :return: embed: (batch, embed_dim)
        """
        with torch.no_grad():
            data = data.to(self.args.device)
            embed = self.encoder(data)
            embed = embed.detach().cpu()
            return embed

    def trainSVM(self, load: bool):
        svm_path = os.path.join(self.args.CKPT_PATH, self.model_name + '--svm')
        self.loadAutoEncoder(self.args.epochs)
        self.encoder.eval()
        self.decoder.eval()
        if load:
            print('  -> Loaded from SVM trained model.')
            self.svm = joblib.load(svm_path)
            return
        print()
        print("================ SVM Training Starting ================")
        all_data, all_labels = self._load_all_data()
        all_length = len(all_data)
        self.svmDataset = FERDataset(all_data,
                                     labels=all_labels,
                                     use_da=False,
                                     args=self.args)
        self.svmDataloader = DataLoader(dataset=self.svmDataset,
                                        batch_size=self.args.batch_size,
                                        shuffle=False,
                                        num_workers=self.args.num_workers)
        print("  -> Converting to extracted features ...")
        cnt = 0
        all_embeds = []
        all_labels = []
        for images, labels in self.svmDataloader:
            cnt += 1
            embeds = self.generateExtractedFeatures(images)
            all_embeds.extend(embeds.tolist())
            all_labels.extend(labels.reshape(-1).tolist())
        print('  -> Start SVM fit ...')
        self.svm.fit(X=all_embeds, y=all_labels)
        # self.svm.fit(X=all_embeds[0:3], y=[0, 1, 2])
        joblib.dump(self.svm, svm_path)
        print("  -> Done training for SVM.")

    def genTestResult(self, from_svm=True):
        print()
        print('-------------------------------------------------------')
        print('  -> Generating test result for {:} ...'.format(
            'SVM' if from_svm else 'Resnet'))
        test_data, img_names = self._load_test_data()
        test_length = len(test_data)
        self.testDataset = FERDataset(test_data,
                                      filenames=img_names,
                                      use_da=False,
                                      args=self.args)
        self.testDataloader = DataLoader(dataset=self.testDataset,
                                         batch_size=self.args.batch_size,
                                         shuffle=False,
                                         num_workers=self.args.num_workers)
        str_preds = []
        for images, filenames in self.testDataloader:
            if from_svm:
                embeds = self.generateExtractedFeatures(images)
                preds = self.svm.predict(X=embeds)
            else:
                self.resnet.eval()
                outs = self.resnet(
                    images.repeat(1, 3, 1, 1).to(self.args.device))
                preds = outs.max(-1)[1].cpu().tolist()
            str_preds.extend([LabelEnum(pred).name for pred in preds])
        # generate submission
        assert len(str_preds) == len(img_names)
        submission = pd.DataFrame({'file_name': img_names, 'class': str_preds})
        submission.to_csv(os.path.join(self.args.DATA_PATH, 'submission.csv'),
                          index=False,
                          index_label=False)
        print('  -> Done generation of submission.csv with model {:}'.format(
            self.model_name))

    def epochTrainResnet(self, epoch):
        self.resnet.train()

        cumul_loss = 0
        cumul_acc = 0
        cumul_steps = 0
        cumul_samples = 0
        cumulative_batch = 0

        self.resnetOptimizer.zero_grad()

        for idx, (images, labels) in enumerate(tqdm(self.pretrainDataloader)):
            batch_size = images.shape[0]
            images, labels = images.to(self.args.device), labels.to(
                self.args.device)
            images += torch.randn(images.shape).to(
                images.device) * self.args.add_noise
            images = images.repeat(1, 3, 1, 1)

            outs = self.resnet(images)
            preds = outs.max(-1)[1].unsqueeze(dim=1)
            cur_acc = (preds == labels).type(torch.int).sum().item()

            loss = self.resnetLossFn(outs, labels.squeeze(dim=1))

            loss_each = loss / self.args.cumul_batch
            loss_each.backward()

            cumulative_batch += 1
            cumul_steps += 1
            cumul_loss += loss.detach().cpu().item() * batch_size
            cumul_acc += cur_acc
            cumul_samples += batch_size

            if cumulative_batch >= self.args.cumul_batch:
                torch.nn.utils.clip_grad_norm_(self.resnet.parameters(),
                                               max_norm=self.args.max_norm)
                self.resnetOptimizer.step()
                self.resnetScheduler.step()
                self.resnetOptimizer.zero_grad()
                cumulative_batch = 0

            if cumul_steps >= self.args.disp_period or idx + 1 == len(
                    self.pretrainDataloader):
                print(" -> cumul_steps={:} loss={:} acc={:}".format(
                    cumul_steps, cumul_loss / cumul_samples,
                    cumul_acc / cumul_samples))
                self.pretrain_batch_cnt += 1
                self.writer.add_scalar('batch-loss',
                                       cumul_loss / cumul_samples,
                                       global_step=self.pretrain_batch_cnt)
                self.writer.add_scalar('batch-acc',
                                       cumul_acc / cumul_samples,
                                       global_step=self.pretrain_batch_cnt)
                self.writer.add_scalar(
                    'resnet_lr',
                    self.resnetOptimizer.state_dict()['param_groups'][0]['lr'],
                    global_step=self.pretrain_batch_cnt)
                cumul_steps = 0
                cumul_loss = 0
                cumul_acc = 0
                cumul_samples = 0

        if epoch % 10 == 0:
            self.saveResnet(epoch)

    def saveResnet(self, epoch):
        resnetPath = os.path.join(
            self.args.CKPT_PATH,
            self.model_name + "--Resnet" + "--EPOCH-{:}".format(epoch))
        print("-----------------------------------------------")
        print("  -> Saving Resnet {:} ......".format(self.model_name))
        torch.save(self.resnet.state_dict(), resnetPath)
        print("  -> Successfully saved Resnet.")
        print("-----------------------------------------------")

    def loadResnet(self, epoch):
        resnetPath = os.path.join(
            self.args.CKPT_PATH,
            self.model_name + "--Resnet" + "--EPOCH-{:}".format(epoch))
        print("-----------------------------------------------")
        print("  -> Loading Resnet {:} ......".format(self.model_name))
        self.resnet.load_state_dict(torch.load(resnetPath))
        print("  -> Successfully loaded Resnet.")
        print("-----------------------------------------------")

    def trainResnet(self):
        self.writer = SummaryWriter(
            os.path.join(self.args.LOG_PATH, self.model_name))
        all_data, all_labels = self._load_all_data()
        self.pretrainDataset = FERDataset(all_data,
                                          labels=all_labels,
                                          args=self.args)
        self.pretrainDataloader = DataLoader(dataset=self.pretrainDataset,
                                             batch_size=self.args.batch_size,
                                             shuffle=True,
                                             num_workers=self.args.num_workers)
        self.resnetOptimizer = self.getResnetOptimizer()
        tot_steps = math.ceil(
            len(self.pretrainDataloader) /
            self.args.cumul_batch) * self.args.epochs
        self.resnetScheduler = get_linear_schedule_with_warmup(
            self.resnetOptimizer,
            num_warmup_steps=tot_steps * self.args.warmup_rate,
            num_training_steps=tot_steps)
        self.resnetLossFn = torch.nn.CrossEntropyLoss(
            weight=torch.tensor([
                9.40661861,
                1.00104606,
                0.56843877,
                0.84912748,
                1.02660468,
                1.29337298,
                0.82603942,
            ],
                                dtype=torch.float,
                                device=self.args.device))
        epochs = self.args.epochs
        for epoch in range(1, epochs + 1):
            print()
            print(
                "================ Resnet Training Epoch {:}/{:} ================"
                .format(epoch, epochs))
            print(" ---- Start training ------>")
            self.epochTrainResnet(epoch)
            print()
        self.writer.close()

    def getResnetOptimizer(self):
        if self.args.resnet_optim == 'SGD':
            return torch.optim.SGD([{
                'params': self.resnet.baseParameters(),
                'lr': self.args.resnet_base_lr,
                'weight_decay': self.args.weight_decay,
                'momentum': self.args.resnet_momentum
            }, {
                'params': self.resnet.finetuneParameters(),
                'lr': self.args.resnet_ft_lr,
                'weight_decay': self.args.weight_decay,
                'momentum': self.args.resnet_momentum
            }],
                                   lr=self.args.resnet_base_lr)
        elif self.args.resnet_optim == 'Adam':
            return torch.optim.Adam([{
                'params': self.resnet.baseParameters(),
                'lr': self.args.resnet_base_lr
            }, {
                'params': self.resnet.finetuneParameters(),
                'lr': self.args.resnet_ft_lr,
                'weight_decay': self.args.weight_decay
            }])
Beispiel #15
0
def create_model_code_retrieval(opt, dataset, all_dict):
    def _init_param(opt, model):
        for p in model.parameters():
            p.data.uniform_(-opt.param_init, opt.param_init)

    dict_code, dict_comment = all_dict[0], all_dict[1]
    if opt.dataset_type == "c":
        dict_leaves = all_dict[2]
    else:
        dict_leaves = dict_code

    if opt.modal_type == "seq8tree8cfg9selfattn":

        seq_encoder = RetrievalCodeEncoderWrapper(opt, Encoder(opt, dict_code),
                                                  "seq9coattn")
        tree_encoder = RetrievalCodeEncoderWrapper(
            opt, TreeEncoder_TreeLSTM_dgl(opt, dict_leaves), "tree9coattn")

        if opt.use_outmlp3:
            cfg_encoder = RetrievalCodeEncoderWrapper(
                opt,
                CFGEncoder_GGNN(opt, dataset.new_annotation_dim,
                                dataset.new_n_edge_types, dataset.new_n_node),
                "cfg")
        else:
            cfg_encoder = RetrievalCodeEncoderWrapper(
                opt,
                CFGEncoder_GGNN(opt, dataset.new_annotation_dim,
                                dataset.new_n_edge_types, dataset.new_n_node),
                "cfg9coattn")

        code_encoder = RetrievalCodeEncoderWrapper(
            opt, (seq_encoder, tree_encoder, cfg_encoder), opt.modal_type)
        comment_encoder = RetrievalCommentEncoderWrapper(
            opt, Encoder(opt, dict_comment))
        _init_param(opt, seq_encoder)
        _init_param(opt, tree_encoder)
        _init_param(opt, comment_encoder)
        if opt.modal_type == "seq8tree8cfg9selfattn":
            model = ModelCodeRetrieval(code_encoder, comment_encoder, opt)

    print("model.state_dict().keys(): \n ", model.state_dict().keys())
    if opt.model_from:
        if os.path.exists(opt.model_from):
            print("Loading from checkpoint at %s" % opt.model_from)
            checkpoint = torch.load(opt.model_from,
                                    map_location=lambda storage, loc: storage)
            model.load_state_dict(checkpoint)
        else:
            print("not load pt file")

    print("create_model_code_retrieval, opt.gpus: ", opt.gpus)
    if opt.gpus:
        model.cuda()
        print("model.cuda() ok")
        gpu_list = [int(k) for k in opt.gpus.split(",")]
        gpu_list = list(range(len(gpu_list)))
        if len(gpu_list) > 1:
            model = torch.nn.DataParallel(model, device_ids=gpu_list)
            print("DataParallel ok , gpu_list: ", gpu_list)

    return model
Beispiel #16
0
import tensorflow as tf

from model.Attention import Attention
from model.Decoder import Decoder
from model.Encoder import Encoder

if __name__ == "__main__":
    BATCH_SIZE = 64
    vocab_inp_size = 32
    vocab_tar_size = 32
    embedding_dim = 256
    units = 1024

    # Encoder
    encoder = Encoder(vocab_inp_size, embedding_dim, units, BATCH_SIZE)

    example_input_batch = tf.random.uniform(shape=(64, 16),
                                            minval=0,
                                            maxval=31,
                                            dtype=tf.int64)
    example_target_batch = tf.random.uniform(shape=(64, 11),
                                             minval=0,
                                             maxval=31,
                                             dtype=tf.int64)
    print(example_input_batch.shape, example_target_batch.shape)
    # sample input
    sample_hidden = encoder.initialize_hidden_state()
    sample_cell = encoder.initialize_cell_state()
    sample_output, sample_hidden, cell_hidden = encoder(
        example_input_batch, [sample_hidden, sample_cell])
    print(
Beispiel #17
0
class NeoOriginal:
    def __init__(  # TODO move parameters to config file
            self,
            pset,
            batch_size=64,
            max_size=100,
            vocab_inp_size=32,
            vocab_tar_size=32,
            embedding_dim=64,
            units=128,
            hidden_size=128,
            alpha=0.1,
            epochs=200,
            epoch_decay=1,
            min_epochs=10,
            verbose=True):
        self.alpha = alpha
        self.batch_size = batch_size
        self.max_size = max_size
        self.epochs = epochs
        self.epoch_decay = epoch_decay
        self.min_epochs = min_epochs
        self.train_steps = 0

        self.verbose = verbose

        self.enc = Encoder(vocab_inp_size, embedding_dim, units, batch_size)
        self.dec = Decoder(vocab_inp_size, vocab_tar_size, embedding_dim,
                           units, batch_size)
        self.surrogate = Surrogate(hidden_size)
        self.population = Population(pset, max_size, batch_size)
        self.prob = 0.5

        self.optimizer = tf.keras.optimizers.Adam()
        self.loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=False, reduction='none')

    def save_models(self):
        self.enc.save_weights("model/weights/encoder/enc_{}".format(
            self.train_steps),
                              save_format="tf")
        self.dec.save_weights("model/weights/decoder/dec_{}".format(
            self.train_steps),
                              save_format="tf")
        self.surrogate.save_weights(
            "model/weights/surrogate/surrogate_{}".format(self.train_steps),
            save_format="tf")

    def load_models(self, train_steps):
        self.enc.load_weights(
            "model/weights/encoder/enc_{}".format(train_steps))
        self.dec.load_weights(
            "model/weights/decoder/dec_{}".format(train_steps))
        self.surrogate.load_weights(
            "model/weights/surrogate/surrogate_{}".format(train_steps))

    @tf.function
    def train_step(self, inp, targ, targ_surrogate, enc_hidden, enc_cell):
        autoencoder_loss = 0
        with tf.GradientTape(persistent=True) as tape:
            enc_output, enc_hidden, enc_cell = self.enc(
                inp, [enc_hidden, enc_cell])

            surrogate_output = self.surrogate(enc_hidden)
            surrogate_loss = self.surrogate_loss_function(
                targ_surrogate, surrogate_output)

            dec_hidden = enc_hidden
            dec_cell = enc_cell
            context = tf.zeros(shape=[len(dec_hidden), 1, dec_hidden.shape[1]])

            dec_input = tf.expand_dims([1] * len(inp), 1)

            for t in range(1, self.max_size):
                initial_state = [dec_hidden, dec_cell]
                predictions, context, [dec_hidden, dec_cell
                                       ], _ = self.dec(dec_input, context,
                                                       enc_output,
                                                       initial_state)
                autoencoder_loss += self.autoencoder_loss_function(
                    targ[:, t], predictions)

                # Probabilistic teacher forcing
                # (feeding the target as the next input)
                if tf.random.uniform(shape=[], maxval=1,
                                     dtype=tf.float32) > self.prob:
                    dec_input = tf.expand_dims(targ[:, t], 1)
                else:
                    pred_token = tf.argmax(predictions,
                                           axis=1,
                                           output_type=tf.dtypes.int32)
                    dec_input = tf.expand_dims(pred_token, 1)

            loss = autoencoder_loss + self.alpha * surrogate_loss

        ae_loss_per_token = autoencoder_loss / int(targ.shape[1])
        batch_loss = ae_loss_per_token + self.alpha * surrogate_loss
        batch_ae_loss = (autoencoder_loss / int(targ.shape[1]))
        batch_surrogate_loss = surrogate_loss

        gradients, variables = self.backward(loss, tape)
        self.optimize(gradients, variables)

        return batch_loss, batch_ae_loss, batch_surrogate_loss

    def backward(self, loss, tape):
        variables = \
            self.enc.trainable_variables + self.dec.trainable_variables \
            + self.surrogate.trainable_variables
        gradients = tape.gradient(loss, variables)
        return gradients, variables

    def optimize(self, gradients, variables):
        self.optimizer.apply_gradients(zip(gradients, variables))

    def surrogate_breed(self, output, latent, tape):
        gradients = tape.gradient(output, latent)
        return gradients

    def update_latent(self, latent, gradients, eta):
        latent += eta * gradients
        return latent

    def autoencoder_loss_function(self, real, pred):
        mask = tf.math.logical_not(tf.math.equal(real, 0))
        loss_ = self.loss_object(real, pred)
        mask = tf.cast(mask, dtype=loss_.dtype)
        loss_ *= mask
        return tf.reduce_mean(loss_)

    def surrogate_loss_function(self, real, pred):
        loss_ = tf.keras.losses.mean_squared_error(real, pred)
        return tf.reduce_mean(loss_)

    def __train(self):

        for epoch in range(self.epochs):
            self.epoch = epoch
            start = time.time()

            total_loss = 0
            total_ae_loss = 0
            total_surrogate_loss = 0

            data_generator = self.population()
            for (batch, (inp, targ,
                         targ_surrogate)) in enumerate(data_generator):
                enc_hidden = self.enc.initialize_hidden_state(
                    batch_sz=len(inp))
                enc_cell = self.enc.initialize_cell_state(batch_sz=len(inp))
                batch_loss, batch_ae_loss, batch_surr_loss = self.train_step(
                    inp, targ, targ_surrogate, enc_hidden, enc_cell)
                total_loss += batch_loss
                total_ae_loss += batch_ae_loss
                total_surrogate_loss += batch_surr_loss

                if False and self.verbose:
                    print(f'Epoch {epoch + 1} Batch {batch} '
                          f'Loss {batch_loss.numpy():.4f}')

            if self.verbose and ((epoch + 1) % 10 == 0 or epoch == 0):
                epoch_loss = total_loss / self.population.steps_per_epoch
                ae_loss = total_ae_loss / self.population.steps_per_epoch
                surrogate_loss = \
                    total_surrogate_loss / self.population.steps_per_epoch
                epoch_time = time.time() - start
                print(f'Epoch {epoch + 1} Loss {epoch_loss:.6f} AE_loss '
                      f'{ae_loss:.6f} Surrogate_loss '
                      f'{surrogate_loss:.6f} Time: {epoch_time:.3f}')

        # decrease number of epochs, but don't go below self.min_epochs
        self.epochs = max(self.epochs - self.epoch_decay, self.min_epochs)

    def _gen_children(self,
                      candidates,
                      enc_output,
                      enc_hidden,
                      enc_cell,
                      max_eta=1000):
        children = []
        eta = 0
        enc_mask = enc_output._keras_mask
        last_copy_ind = len(candidates)
        while eta < max_eta:
            eta += 1
            start = time.time()
            new_children = self._gen_decoded(eta, enc_output, enc_hidden,
                                             enc_cell, enc_mask).numpy()
            new_children = self.cut_seq(new_children, end_token=2)
            new_ind, copy_ind = self.find_new(new_children, candidates)
            if len(copy_ind) < last_copy_ind:
                last_copy_ind = len(copy_ind)
                print("Eta {} Not-changed {} Time: {:.3f}".format(
                    eta, len(copy_ind),
                    time.time() - start))
            for i in new_ind:
                children.append(new_children[i])
            if len(copy_ind) < 1:
                break
            enc_output = tf.gather(enc_output, copy_ind)
            enc_mask = tf.gather(enc_mask, copy_ind)
            enc_hidden = tf.gather(enc_hidden, copy_ind)
            enc_cell = tf.gather(enc_cell, copy_ind)
            candidates = tf.gather(candidates, copy_ind)
        if eta == max_eta:
            print("Maximal value of eta reached - breed stopped")
        for i in copy_ind:
            children.append(new_children[i])
        return children

    def _gen_decoded(self, eta, enc_output, enc_hidden, enc_cell, enc_mask):
        with tf.GradientTape(persistent=True,
                             watch_accessed_variables=False) as tape:
            tape.watch(enc_hidden)
            surrogate_output = self.surrogate(enc_hidden)
        gradients = self.surrogate_breed(surrogate_output, enc_hidden, tape)
        dec_hidden = self.update_latent(enc_hidden, gradients, eta=eta)
        dec_cell = enc_cell
        context = tf.zeros(shape=[len(dec_hidden), 1, dec_hidden.shape[1]])

        dec_input = tf.expand_dims([1] * len(enc_hidden), 1)

        child = dec_input
        for _ in range(1, self.max_size - 1):
            initial_state = [dec_hidden, dec_cell]
            predictions, context, [dec_hidden, dec_cell
                                   ], _ = self.dec(dec_input, context,
                                                   enc_output, initial_state,
                                                   enc_mask)
            dec_input = tf.expand_dims(
                tf.argmax(predictions, axis=1, output_type=tf.dtypes.int32), 1)
            child = tf.concat([child, dec_input], axis=1)
        stop_tokens = tf.expand_dims([2] * len(enc_hidden), 1)
        child = tf.concat([child, stop_tokens], axis=1)
        return child

    def cut_seq(self, seq, end_token=2):
        ind = (seq == end_token).argmax(1)
        res = []
        tree_max = []
        for d, i in zip(seq, ind):
            repaired_tree = create_expression_tree(d[:i + 1][1:-1])
            repaired_seq = [i.data for i in repaired_tree.preorder()
                            ][-(self.max_size - 2):]
            tree_max.append(len(repaired_seq) == self.max_size - 2)
            repaired_seq = [1] + repaired_seq + [2]
            res.append(np.pad(repaired_seq, (0, self.max_size - i - 1)))
        return res

    def find_new(self, seq, candidates):
        new_ind = []
        copy_ind = []
        n = False
        cp = False
        for i, (s, c) in enumerate(zip(seq, candidates)):
            if not np.array_equal(s, c):
                if not n:
                    n = True
                new_ind.append(i)
            else:
                if not cp:
                    cp = True
                copy_ind.append(i)
        return new_ind, copy_ind

    def _gen_latent(self, candidates):
        enc_hidden = self.enc.initialize_hidden_state(batch_sz=len(candidates))
        enc_cell = self.enc.initialize_cell_state(batch_sz=len(candidates))
        enc_output, enc_hidden, enc_cell = self.enc(candidates,
                                                    [enc_hidden, enc_cell])
        return enc_output, enc_hidden, enc_cell

    def update(self):
        print("Training")
        self.enc.train()
        self.dec.train()
        self.__train()
        self.save_models()
        self.train_steps += 1

    def breed(self):
        print("Breed")
        self.dec.eval()
        data_generator = self.population(
            batch_size=len(self.population.samples))

        tokenized_pop = []
        for (batch, (inp, _, _)) in enumerate(data_generator):
            enc_output, enc_hidden, enc_cell = self._gen_latent(inp)

            tokenized_pop += (self._gen_children(inp, enc_output, enc_hidden,
                                                 enc_cell))

        pop_expressions = [
            self.population.tokenizer.reproduce_expression(tp)
            for tp in tokenized_pop
        ]
        offspring = [deap.creator.Individual(pe) for pe in pop_expressions]
        return offspring
Beispiel #18
0
def main():
    
    #create tensorboard summary writer
    writer = SummaryWriter(args.experiment_id)
    #[TODO] may need to resize input image
    cudnn.enabled = True
    #create model: Encoder
    model_encoder = Encoder()
    model_encoder.train()
    model_encoder.cuda(args.gpu)
    optimizer_encoder = optim.Adam(model_encoder.parameters(), lr=args.learning_rate, betas=(0.95, 0.99))
    optimizer_encoder.zero_grad()

    #create model: Decoder
    model_decoder = Decoder()
    model_decoder.train()
    model_decoder.cuda(args.gpu)
    optimizer_decoder = optim.Adam(model_decoder.parameters(), lr=args.learning_rate, betas=(0.95, 0.99))
    optimizer_decoder.zero_grad()
    
    l2loss = nn.MSELoss()
    
    #load data
    for i in range(1, 360002, 30000):
        train_data, valid_data = get_data(i)
        for e in range(1, args.epoch + 1):
            train_loss_value = 0
            validation_loss_value = 0
            for j in range(0, int(args.train_size/4), args.batch_size):
                optimizer_decoder.zero_grad()
                optimizer_decoder.zero_grad()
                image = Variable(torch.tensor(train_data[j: j + args.batch_size, :, :])).cuda(args.gpu)
                latent = model_encoder(image)
                img_recon = model_decoder(latent)
                img_recon = F.interpolate(img_recon, size=image.shape[2:], mode='bilinear', align_corners=True) 
                loss = l2loss(img_recon, image)
                train_loss_value += loss.data.cpu().numpy() / args.batch_size
                loss.backward()
                optimizer_decoder.step()
                optimizer_encoder.step()
            print("data load: {:8d}".format(i))
            print("epoch: {:8d}".format(e))
            print("train_loss: {:08.6f}".format(train_loss_value / (args.train_size / args.batch_size)))
            for j in range(0,int(args.validation_size/4), args.batch_size):
                model_encoder.eval()
                model_decoder.eval() 
                image = Variable(torch.tensor(valid_data[j: j + args.batch_size, :, :])).cuda(args.gpu)
                latent = model_encoder(image)
                img_recon = model_decoder(latent)
                img_1 = img_recon[0][0]
                img = image[0][0]
                img_recon = F.interpolate(img_recon, size=image.shape[2:], mode='bilinear', align_corners=True) 
                save_image(img_1, args.image_dir + '/fake' + str(i) + "_" + str(j) + ".png")
                save_image(img, args.image_dir + '/real' + str(i) + "_" + str(j) + ".png")
                image = Variable(torch.tensor(train_data[j: j + args.batch_size, :, :, :])).cuda(args.gpu)
                loss = l2loss(img_recon, image)
                validation_loss_value += loss.data.cpu().numpy() / args.batch_size
            model_encoder.train()
            model_decoder.train()
            print("train_loss: {:08.6f}".format(validation_loss_value / (args.validation_size / args.batch_size)))
        torch.save({'encoder_state_dict': model_encoder.state_dict()}, osp.join(args.checkpoint_dir, 'AE_encoder.pth'))
        torch.save({'decoder_state_dict': model_decoder.state_dict()}, osp.join(args.checkpoint_dir, 'AE_decoder.pth'))
Beispiel #19
0
class Model(nn.Module):
    def __init__(self, config):
        super(Model, self).__init__()
        self.config = config

        # 定义嵌入层
        self.embedding = Embedding(config.num_vocab,  # 词汇表大小
                                   config.embedding_size,  # 嵌入层维度
                                   config.pad_id,  # pad_id
                                   config.dropout)

        # post编码器
        self.post_encoder = Encoder(config.post_encoder_cell_type,  # rnn类型
                                    config.embedding_size,  # 输入维度
                                    config.post_encoder_output_size,  # 输出维度
                                    config.post_encoder_num_layers,  # rnn层数
                                    config.post_encoder_bidirectional,  # 是否双向
                                    config.dropout)  # dropout概率

        # response编码器
        self.response_encoder = Encoder(config.response_encoder_cell_type,
                                        config.embedding_size,  # 输入维度
                                        config.response_encoder_output_size,  # 输出维度
                                        config.response_encoder_num_layers,  # rnn层数
                                        config.response_encoder_bidirectional,  # 是否双向
                                        config.dropout)  # dropout概率

        # 先验网络
        self.prior_net = PriorNet(config.post_encoder_output_size,  # post输入维度
                                  config.latent_size,  # 潜变量维度
                                  config.dims_prior)  # 隐藏层维度

        # 识别网络
        self.recognize_net = RecognizeNet(config.post_encoder_output_size,  # post输入维度
                                          config.response_encoder_output_size,  # response输入维度
                                          config.latent_size,  # 潜变量维度
                                          config.dims_recognize)  # 隐藏层维度

        # 初始化解码器状态
        self.prepare_state = PrepareState(config.post_encoder_output_size+config.latent_size,
                                          config.decoder_cell_type,
                                          config.decoder_output_size,
                                          config.decoder_num_layers)

        # 解码器
        self.decoder = Decoder(config.decoder_cell_type,  # rnn类型
                               config.embedding_size,  # 输入维度
                               config.decoder_output_size,  # 输出维度
                               config.decoder_num_layers,  # rnn层数
                               config.dropout)  # dropout概率

        # 输出层
        self.projector = nn.Sequential(
            nn.Linear(config.decoder_output_size, config.num_vocab),
            nn.Softmax(-1)
        )

    def forward(self, inputs, inference=False, max_len=60, gpu=True):
        if not inference:  # 训练
            id_posts = inputs['posts']  # [batch, seq]
            len_posts = inputs['len_posts']  # [batch]
            id_responses = inputs['responses']  # [batch, seq]
            len_responses = inputs['len_responses']  # [batch, seq]
            sampled_latents = inputs['sampled_latents']  # [batch, latent_size]
            len_decoder = id_responses.size(1) - 1

            embed_posts = self.embedding(id_posts)  # [batch, seq, embed_size]
            embed_responses = self.embedding(id_responses)  # [batch, seq, embed_size]
            # state: [layers, batch, dim]
            _, state_posts = self.post_encoder(embed_posts.transpose(0, 1), len_posts)
            _, state_responses = self.response_encoder(embed_responses.transpose(0, 1), len_responses)
            if isinstance(state_posts, tuple):
                state_posts = state_posts[0]
            if isinstance(state_responses, tuple):
                state_responses = state_responses[0]
            x = state_posts[-1, :, :]  # [batch, dim]
            y = state_responses[-1, :, :]  # [batch, dim]

            # p(z|x)
            _mu, _logvar = self.prior_net(x)  # [batch, latent]
            # p(z|x,y)
            mu, logvar = self.recognize_net(x, y)  # [batch, latent]
            # 重参数化
            z = mu + (0.5 * logvar).exp() * sampled_latents  # [batch, latent]

            # 解码器的输入为回复去掉end_id
            decoder_inputs = embed_responses[:, :-1, :].transpose(0, 1)  # [seq-1, batch, embed_size]
            decoder_inputs = decoder_inputs.split([1] * len_decoder, 0)  # 解码器每一步的输入 seq-1个[1, batch, embed_size]
            first_state = self.prepare_state(torch.cat([z, x], 1))  # [num_layer, batch, dim_out]

            outputs = []
            for idx in range(len_decoder):
                if idx == 0:
                    state = first_state  # 解码器初始状态
                decoder_input = decoder_inputs[idx]  # 当前时间步输入 [1, batch, embed_size]
                # output: [1, batch, dim_out]
                # state: [num_layer, batch, dim_out]
                output, state = self.decoder(decoder_input, state)
                assert output.squeeze().equal(state[0][-1])
                outputs.append(output)

            outputs = torch.cat(outputs, 0).transpose(0, 1)  # [batch, seq-1, dim_out]
            output_vocab = self.projector(outputs)  # [batch, seq-1, num_vocab]

            return output_vocab, _mu, _logvar, mu, logvar
        else:  # 测试
            id_posts = inputs['posts']  # [batch, seq]
            len_posts = inputs['len_posts']  # [batch]
            sampled_latents = inputs['sampled_latents']  # [batch, latent_size]
            batch_size = id_posts.size(0)

            embed_posts = self.embedding(id_posts)  # [batch, seq, embed_size]
            # state = [layers, batch, dim]
            _, state_posts = self.post_encoder(embed_posts.transpose(0, 1), len_posts)
            if isinstance(state_posts, tuple):  # 如果是lstm则取h
                state_posts = state_posts[0]  # [layers, batch, dim]
            x = state_posts[-1, :, :]  # 取最后一层 [batch, dim]

            # p(z|x)
            _mu, _logvar = self.prior_net(x)  # [batch, latent]
            # 重参数化
            z = _mu + (0.5 * _logvar).exp() * sampled_latents  # [batch, latent]

            first_state = self.prepare_state(torch.cat([z, x], 1))  # [num_layer, batch, dim_out]
            done = torch.tensor([0] * batch_size).bool()
            first_input_id = (torch.ones((1, batch_size)) * self.config.start_id).long()
            if gpu:
                done = done.cuda()
                first_input_id = first_input_id.cuda()

            outputs = []
            for idx in range(max_len):
                if idx == 0:  # 第一个时间步
                    state = first_state  # 解码器初始状态
                    decoder_input = self.embedding(first_input_id)  # 解码器初始输入 [1, batch, embed_size]
                else:
                    decoder_input = self.embedding(next_input_id)  # [1, batch, embed_size]
                # output: [1, batch, dim_out]
                # state: [num_layers, batch, dim_out]
                output, state = self.decoder(decoder_input, state)
                outputs.append(output)

                vocab_prob = self.projector(output)  # [1, batch, num_vocab]
                next_input_id = torch.argmax(vocab_prob, 2)  # 选择概率最大的词作为下个时间步的输入 [1, batch]

                _done = next_input_id.squeeze(0) == self.config.end_id  # 当前时间步完成解码的 [batch]
                done = done | _done  # 所有完成解码的
                if done.sum() == batch_size:  # 如果全部解码完成则提前停止
                    break

            outputs = torch.cat(outputs, 0).transpose(0, 1)  # [batch, seq, dim_out]
            output_vocab = self.projector(outputs)  # [batch, seq, num_vocab]

            return output_vocab, _mu, _logvar, None, None

    def print_parameters(self):
        r""" 统计参数 """
        total_num = 0  # 参数总数
        for param in self.parameters():
            num = 1
            if param.requires_grad:
                size = param.size()
                for dim in size:
                    num *= dim
            total_num += num
        print(f"参数总数: {total_num}")

    def save_model(self, epoch, global_step, path):
        r""" 保存模型 """
        torch.save({'embedding': self.embedding.state_dict(),
                    'post_encoder': self.post_encoder.state_dict(),
                    'response_encoder': self.response_encoder.state_dict(),
                    'prior_net': self.prior_net.state_dict(),
                    'recognize_net': self.recognize_net.state_dict(),
                    'prepare_state': self.prepare_state.state_dict(),
                    'decoder': self.decoder.state_dict(),
                    'projector': self.projector.state_dict(),
                    'epoch': epoch,
                    'global_step': global_step}, path)

    def load_model(self, path):
        r""" 载入模型 """
        checkpoint = torch.load(path, map_location=torch.device('cpu'))
        self.embedding.load_state_dict(checkpoint['embedding'])
        self.post_encoder.load_state_dict(checkpoint['post_encoder'])
        self.response_encoder.load_state_dict(checkpoint['response_encoder'])
        self.prior_net.load_state_dict(checkpoint['prior_net'])
        self.recognize_net.load_state_dict(checkpoint['recognize_net'])
        self.prepare_state.load_state_dict(checkpoint['prepare_state'])
        self.decoder.load_state_dict(checkpoint['decoder'])
        self.projector.load_state_dict(checkpoint['projector'])
        epoch = checkpoint['epoch']
        global_step = checkpoint['global_step']
        return epoch, global_step