Beispiel #1
0
def main(config_file_path):
    config_parser = get_config_parser(config_file_path)
    config = get_config(config_parser)
    logger = get_logger(config)

    with tf.Session() as sess:
        processor = Processor(config, logger)
        env = Environment(logger, config, processor.price_blocks,
                          processor.timestamp_blocks)
        agent = Agent(sess, logger, config, env)
        agent.train()

        agent.summary_writer.close()
Beispiel #2
0
def main(config_file_path):
    config_parser = get_config_parser(config_file_path)
    config = get_config(config_parser)
    logger = get_logger(config)

    with tf.Session() as sess:
        processor = Processor(config, logger)
        env = Environment(logger, config, processor.diff_blocks, 
                                            processor.price_blocks, 
                                                processor.timestamp_blocks)
        agent = Agent(sess, logger, config, env)
        agent.train()

        agent.summary_writer.close()
Beispiel #3
0
class Master:
    """
    master, train AI model
    """

    def __init__(self):
        LOG.info('init master')

        self.__loop_count = 0
        self.__train_step = 0

        self.__args = self._set_args()
        LOG.info("the args is{}".format(self.__args))
        self.rainbow = Agent(self.__args, ACTION_SPACE)
        self.rainbow.train()

        self.__count_list = list()
        self.__queue_list = list()
        self.__memory_list = list()
        for _ in range(MAX_WORKER_COUNT):
            self.__count_list.append(0)
            self.__queue_list.append(queue.Queue())
            self.__memory_list.append(ReplayMemory(self.__args, self.__args.memory_capacity))

        self.__priority_weight_increase = (1 - self.__args.priority_weight) / (
                self.__args.T_max - self.__args.learn_start)

    def send_transition(self, index, state, action_index, reward, done):
        self.__queue_list[index].put((state, action_index, reward, done))
        return

    def __get_action_data(self, idx):
        while True:
            if not self.__queue_list[idx].empty():
                (state, action_index, reward, done) = self.__queue_list[idx].get()
                self.__memory_list[idx].append(state, action_index, reward, done)
                self.__count_list[idx] += 1
                return True
            return False

    def __get_train_data(self):
        index_list = list()
        for idx in range(MAX_WORKER_COUNT):
            if self.__get_action_data(idx) is True:
                index_list.append(idx)
        return index_list

    def __save_train_model(self):
        if self.__train_step % 2e4 == 0:
            st = time.time()
            self.rainbow.save('./Model/', name='model_{}.pth'.format(self.__train_step))
            et = time.time()
            cost_ime = ((et - st) * 1000)
            LOG.info('saving rainbow costs {} ms at train step {}'.format(cost_ime, self.__train_step))

    def __print_progress_log(self, start_time):
        if self.__loop_count % LOG_FREQUENCY == 0:
            cost_ime = ((time.time() - start_time) * 1000)
            LOG.info('train rainbow is {} ms at loop count {}'.format(cost_ime, self.__loop_count))

    def train(self):

        start_time = time.time()
        index_list = self.__get_train_data()

        if len(index_list) == 0:
            return

        for _ in range(3):
            i = np.random.randint(len(index_list))
            idx = index_list[i]

            if self.__count_list[idx] >= self.__args.learn_start:

                # Anneal importance sampling weight β to 1
                self.__memory_list[idx].priority_weight = min(
                    self.__memory_list[idx].priority_weight + self.__priority_weight_increase, 1)

                if self.__loop_count % self.__args.replay_frequency == 0:
                    start_time = time.time()
                    self.rainbow.learn(self.__memory_list[idx])  # Train with n-step distributional double-Q learning
                    self.__print_progress_log(start_time)
                    self.__save_train_model()
                    self.__train_step += 1

        # Update target network
        if self.__loop_count % self.__args.target_update == 0:
            # LOG.info('master updates target net at train step {}'.format(self.__trainStep))
            self.rainbow.update_target_net()

        if self.__loop_count % LOG_FREQUENCY == 0:
            LOG.info('train time is {} ms at loop count {}'.format(((time.time() - start_time) * 1000),
                                                                   self.__loop_count))

        self.__loop_count += 1

        return

    # pylint: disable=R0201
    def _set_args(self):
        parser = argparse.ArgumentParser(description='Rainbow')
        parser.add_argument('--enable-cuda', action='store_true', help='Enable CUDA')
        parser.add_argument('--enable-cudnn', action='store_true', help='Enable cuDNN')

        parser.add_argument('--T-max', type=int, default=int(50e6), metavar='STEPS',
                            help='Number of training steps (4x number of frames)')

        parser.add_argument('--architecture', type=str, default='canonical', choices=['canonical', 'data-efficient'],
                            metavar='ARCH', help='Network architecture')
        parser.add_argument('--history-length', type=int, default=4, metavar='T',
                            help='Number of consecutive states processed')
        parser.add_argument('--hidden-size', type=int, default=512, metavar='SIZE', help='Network hidden size')
        parser.add_argument('--noisy-std', type=float, default=0.1, metavar='σ',
                            help='Initial standard deviation of noisy linear layers')
        parser.add_argument('--atoms', type=int, default=51, metavar='C', help='Discretised size of value distribution')
        parser.add_argument('--V-min', type=float, default=-10, metavar='V',
                            help='Minimum of value distribution support')
        parser.add_argument('--V-max', type=float, default=10, metavar='V',
                            help='Maximum of value distribution support')

        parser.add_argument('--model', type=str, metavar='PARAMS', help='Pretrained model (state dict)')
        parser.add_argument('--memory-capacity', type=int, default=int(40000), metavar='CAPACITY',
                            help='Experience replay memory capacity')
        parser.add_argument('--replay-frequency', type=int, default=1, metavar='k',
                            help='Frequency of sampling from memory')
        parser.add_argument('--priority-exponent', type=float, default=0.5, metavar='ω',
                            help='Prioritised experience replay exponent (originally denoted α)')
        parser.add_argument('--priority-weight', type=float, default=0.4, metavar='β',
                            help='Initial prioritised experience replay importance sampling weight')
        parser.add_argument('--multi-step', type=int, default=3, metavar='n',
                            help='Number of steps for multi-step return')
        parser.add_argument('--discount', type=float, default=0.99, metavar='γ', help='Discount factor')
        parser.add_argument('--target-update', type=int, default=int(1e3), metavar='τ',
                            help='Number of steps after which to update target network')
        parser.add_argument('--learning-rate', type=float, default=1e-4, metavar='η', help='Learning rate')
        parser.add_argument('--adam-eps', type=float, default=1.5e-4, metavar='ε', help='Adam epsilon')
        parser.add_argument('--batch-size', type=int, default=32, metavar='SIZE', help='Batch size')
        parser.add_argument('--learn-start', type=int, default=int(400), metavar='STEPS',
                            help='Number of steps before starting training')

        # Setup
        args = parser.parse_args()

        # set random seed
        np.random.seed(123)
        torch.manual_seed(np.random.randint(1, 10000))

        args.enable_cuda = True
        args.enable_cudnn = True

        # set torch device
        if torch.cuda.is_available() and args.enable_cuda:
            args.device = torch.device('cuda')
            torch.cuda.manual_seed(np.random.randint(1, 10000))
            torch.backends.cudnn.enabled = args.enable_cudnn
        else:
            args.device = torch.device('cpu')

        return args