# gan_model.train(result_dir, ckpt_dir, log_dir, training_iteration = 100005, G_update_num=5, D_update_num=1, Q_update_num=2) # #gan_model.test() # del gan_data # del gan_model #iteration test result_dir = os.path.join('/home/artia/prj/results/megan_exp', 'test2', 'result') ckpt_dir = os.path.join('/home/artia/prj/results/megan_exp', 'test2', 'weight') log_dir = os.path.join('/home/artia/prj/results/megan_exp', 'test2', 'weight') if not os.path.isdir(result_dir): os.makedirs(result_dir) if not os.path.isdir(ckpt_dir): os.makedirs(ckpt_dir) if not os.path.isdir(log_dir): os.makedirs(log_dir) gan_data = data.Data(cat_dim, code_con_dim, total_con_dim, channel, path, name, split_name, batch_size) gan_data.visual_prior_path = '/home/artia/prj/datasets/visual_prior_samples_multinumber' gan_model = megan2_1.Megan(gan_data) gan_model.train(result_dir, ckpt_dir, log_dir, training_iteration = 100005, G_update_num=5, D_update_num=1, Q_update_num=2) #gan_model.test() del gan_data del gan_model #iteration test result_dir = os.path.join('/home/artia/prj/results/megan_exp', 'test3', 'result') ckpt_dir = os.path.join('/home/artia/prj/results/megan_exp', 'test3', 'weight') log_dir = os.path.join('/home/artia/prj/results/megan_exp', 'test3', 'weight') if not os.path.isdir(result_dir): os.makedirs(result_dir) if not os.path.isdir(ckpt_dir):
#!/usr/bin/env python import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import sys import numpy as np import model from model import data from model import helpers from model import rnn # load dataset series = data.Data() df = series.get_ili_data() # configure n_lag = 12 n_seq = 4 n_test = 10 n_epochs = 5 n_batch = 1 n_neurons = 1 n_decay = 0.1 n_dropout = 0.6 #neurons = [20, 50, 5, 1] #shape = [seq_len, 3, 1] # window,feature, output