def run(): assert os.path.exists('data/ratings.csv'), \ 'File not exists in path, run preprocess.py before this.' print('Start..') start = time.time() if not os.path.exists('data/lfm_items.dict'): Corpus.pre_process() if not os.path.exists('data/lfm.model'): LFM().train() movies = LFM().predict(user_id=1) for movie in movies: print(movie) print('Cost time: %f' % (time.time() - start))
def run(input_user_id=1, input_top_n=10): assert os.path.exists('data/ratings.csv'), \ 'File not exists in path, run preprocess.py before this.' print('Start..') print('用户ID:%s' % input_user_id) start = time.time() if not os.path.exists('data/lfm_items.dict'): Corpus.pre_process() if not os.path.exists('data/lfm.model'): LFM().train() movies = LFM().predict(user_id=input_user_id, top_n=input_top_n) for movie in movies: print(movie) print('用时: %f' % (time.time() - start))
def run(): assert os.path.exists('data/user/user_follows.csv'), \ 'File not exists in path, run preprocess.py before this.' print('Start..') start = time.time() if not os.path.exists('data/lfm_model/lfm_items.dict'): Corpus.pre_process() if not os.path.exists('data/lfm_model/lfm.model'): LFM().train() uids = [2005098, 6083125955935600644, 6099765861231362052] lfm = LFM() for uid in uids: movies = lfm.predict(user_id=uid) for movie in movies: print(movie) print('Cost time: %f' % (time.time() - start))
def run(): assert os.path.exists('data/ratings.csv'), FILE_NOT_EXIT print('Start..') start = time.time() if not os.path.exists('data/lfm_items.dict'): print('Start to Generate lfm_items.dict.') Corpus.pre_process() print('Generate lfm_items.dict ok.') if not os.path.exists('data/lfm.model'): print('Start to Generate lfm.model.') LFM().train() print('Generate lfm.model ok.') movies = LFM().predict(user_id=1) for movie in movies: print(movie) print('Cost time: %f' % (time.time() - start))
def run(user_id): ''' 调试lfm模型 :param user_id: :return: ''' assert os.path.exists('data/ratings.csv'), \ 'File not exists in path, run preprocess.py before this.' print('Start..') start = time.time() if not os.path.exists('data/lfm_items.dict'): Corpus.pre_process() if not os.path.exists('data/lfm.model'): LFM().train() movies = LFM().predict(user_id) movies_list = list(map(lambda x:x[0], movies)) print(movies_list) print('End.') print('Cost Time:', time.time()-start)
def predict(user_id): cars = LFM().predict(user_id) return cars