Beispiel #1
0
    def __init__(self,  weight_path, resume, gpu_id, accumulate, fp_16):
        init_seeds(0)
        self.fp_16 = fp_16
        self.device = gpu.select_device(gpu_id)
        self.start_epoch = 0
        self.best_mAP = 0.
        self.accumulate = accumulate
        self.epochs = cfg.TRAIN["EPOCHS"]
        self.weight_path = weight_path
        self.multi_scale_train = cfg.TRAIN["MULTI_SCALE_TRAIN"]
        self.train_dataset = data.Build_Dataset(anno_file_type="train", img_size=cfg.TRAIN["TRAIN_IMG_SIZE"])
        print('train img size is {}'.format(cfg.TRAIN["TRAIN_IMG_SIZE"]))
        self.train_dataloader = DataLoader(self.train_dataset,
                                           batch_size=cfg.TRAIN["BATCH_SIZE"],
                                           num_workers=cfg.TRAIN["NUMBER_WORKERS"],
                                           shuffle=True, pin_memory=True
                                           )
        self.yolov4 = Build_Model().to(self.device)

        self.optimizer = optim.SGD(self.yolov4.parameters(), lr=cfg.TRAIN["LR_INIT"],
                                   momentum=cfg.TRAIN["MOMENTUM"], weight_decay=cfg.TRAIN["WEIGHT_DECAY"])

        self.criterion = YoloV4Loss(anchors=cfg.MODEL["ANCHORS"], strides=cfg.MODEL["STRIDES"],
                                    iou_threshold_loss=cfg.TRAIN["IOU_THRESHOLD_LOSS"])

        self.__load_model_weights(weight_path, resume)

        self.scheduler = cosine_lr_scheduler.CosineDecayLR(self.optimizer,
                                                          T_max=self.epochs*len(self.train_dataloader),
                                                          lr_init=cfg.TRAIN["LR_INIT"],
                                                          lr_min=cfg.TRAIN["LR_END"],
                                                          warmup=cfg.TRAIN["WARMUP_EPOCHS"]*len(self.train_dataloader))
Beispiel #2
0
    def __init__(self,
                 weight_path=None,
                 resume=False,
                 gpu_id=0,
                 accumulate=1,
                 fp_16=False):
        init_seeds(0)
        self.fp_16 = fp_16
        self.device = gpu.select_device(gpu_id)
        self.start_epoch = 0
        self.best_mAP = 0.0
        self.accumulate = accumulate
        self.weight_path = weight_path
        self.multi_scale_train = cfg.TRAIN["MULTI_SCALE_TRAIN"]
        self.showatt = cfg.TRAIN["showatt"]
        if self.multi_scale_train:
            print("Using multi scales training")
        else:
            print("train img size is {}".format(cfg.TRAIN["TRAIN_IMG_SIZE"]))
        self.train_dataset = data.Build_Dataset(
            anno_file_type="train", img_size=cfg.TRAIN["TRAIN_IMG_SIZE"])
        self.epochs = (cfg.TRAIN["YOLO_EPOCHS"] if cfg.MODEL_TYPE["TYPE"]
                       == "YOLOv4" else cfg.TRAIN["Mobilenet_YOLO_EPOCHS"])
        self.eval_epoch = (30 if cfg.MODEL_TYPE["TYPE"] == "YOLOv4" else 50)
        self.train_dataloader = DataLoader(
            self.train_dataset,
            batch_size=cfg.TRAIN["BATCH_SIZE"],
            num_workers=cfg.TRAIN["NUMBER_WORKERS"],
            shuffle=True,
            pin_memory=True,
        )

        self.yolov4 = Build_Model(weight_path=weight_path,
                                  resume=resume,
                                  showatt=self.showatt).to(self.device)

        self.optimizer = optim.SGD(
            self.yolov4.parameters(),
            lr=cfg.TRAIN["LR_INIT"],
            momentum=cfg.TRAIN["MOMENTUM"],
            weight_decay=cfg.TRAIN["WEIGHT_DECAY"],
        )

        self.criterion = YoloV4Loss(
            anchors=cfg.MODEL["ANCHORS"],
            strides=cfg.MODEL["STRIDES"],
            iou_threshold_loss=cfg.TRAIN["IOU_THRESHOLD_LOSS"],
        )

        self.scheduler = cosine_lr_scheduler.CosineDecayLR(
            self.optimizer,
            T_max=self.epochs * len(self.train_dataloader),
            lr_init=cfg.TRAIN["LR_INIT"],
            lr_min=cfg.TRAIN["LR_END"],
            warmup=cfg.TRAIN["WARMUP_EPOCHS"] * len(self.train_dataloader),
        )
        if resume:
            self.__load_resume_weights(weight_path)
Beispiel #3
0
    def __init__(self, log_dir, resume=False, fine_tune=False):
        init_seeds(0)
        if fine_tune:
            self.__prepare_fine_tune()
        self.fp_16 = cfg.FP16
        self.device = gpu.select_device()
        self.start_epoch = 0
        self.best_mAP = 0.
        self.accumulate = cfg.TRAIN.ACCUMULATE
        self.log_dir = log_dir
        self.weight_path = "/content/drive/MyDrive/YOLO/weights/yolov4.weights"
        self.multi_scale_train = cfg.TRAIN.MULTI_SCALE_TRAIN
        if self.multi_scale_train:
            print('Using multi scales training')
        else:
            print('train img size is {}'.format(cfg.TRAIN.TRAIN_IMG_SIZE))
        self.train_dataset = data.Build_Train_Dataset(
            anno_file=cfg.TRAIN.ANNO_FILE,
            anno_file_type="train",
            img_size=cfg.TRAIN.TRAIN_IMG_SIZE)

        self.epochs = cfg.TRAIN.YOLO_EPOCHS if cfg.MODEL.MODEL_TYPE == 'YOLOv4' else cfg.TRAIN.Mobilenet_YOLO_EPOCHS
        self.train_dataloader = DataLoader(
            self.train_dataset,
            batch_size=cfg.TRAIN.BATCH_SIZE // cfg.TRAIN.ACCUMULATE,
            num_workers=cfg.TRAIN.NUMBER_WORKERS,
            shuffle=True,
            pin_memory=True)
        self.yolov4 = Build_Model(
            weight_path="/content/drive/MyDrive/YOLO/weights/yolov4.weights",
            resume=resume)

        self.yolov4 = self.yolov4.to(self.device)

        self.optimizer = optim.SGD(self.yolov4.parameters(),
                                   lr=cfg.TRAIN.LR_INIT,
                                   momentum=cfg.TRAIN.MOMENTUM,
                                   weight_decay=cfg.TRAIN.WEIGHT_DECAY)

        self.criterion = YoloV4Loss(
            anchors=cfg.MODEL.ANCHORS,
            strides=cfg.MODEL.STRIDES,
            iou_threshold_loss=cfg.TRAIN.IOU_THRESHOLD_LOSS)

        self.scheduler = cosine_lr_scheduler.CosineDecayLR(
            self.optimizer,
            T_max=self.epochs * len(self.train_dataloader),
            lr_init=cfg.TRAIN.LR_INIT,
            lr_min=cfg.TRAIN.LR_END,
            warmup=cfg.TRAIN.WARMUP_EPOCHS * len(self.train_dataloader))
        if resume: self.__load_resume_weights()
        if fine_tune: self.__load_best_weights()
Beispiel #4
0
    def __init__(self, weight_path, resume, exp_name, accumulate=None):
        # precision=16 for fp16

        super().__init__()
        self.model = Build_Model(weight_path=weight_path, resume=resume)
        self.criterion = YoloV4Loss(
            anchors=cfg.MODEL["ANCHORS"],
            strides=cfg.MODEL["STRIDES"],
            iou_threshold_loss=cfg.TRAIN["IOU_THRESHOLD_LOSS"])

        self.evaluator = Evaluator(self.model,
                                   showatt=False,
                                   exp_name=exp_name)
        self.evaluator.clear_predict_file()
Beispiel #5
0
    def __init__(self,
                 weight_path=None,
                 resume: bool = False,
                 gpu_id: int = 0,
                 accumulate: bool = True,
                 fp_16: bool = False):

        # PYTHON HASH SEED
        init_seeds(0)

        # device
        self.fp_16: bool = fp_16
        self.device: torch.device = gpu.select_device(gpu_id)
        self.start_epoch: int = 0
        self.best_mAP: float = 0.0  # not sure why this is necessary...
        self.accumulate: bool = accumulate
        self.weight_path: Path = weight_path
        self.multi_scale_train: bool = cfg.TRAIN["MULTI_SCALE_TRAIN"]
        # Show attention modification?
        self.showatt = cfg.TRAIN["showatt"]

        # Multi-scale training status
        if self.multi_scale_train:
            print("Using multi scales training")
        else:
            print(f"train img size is {cfg.TRAIN['TRAIN_IMG_SIZE']}")

        # Build Dataset using helper function.
        self.train_dataset = data.Build_Dataset(
            anno_file_type="train", img_size=cfg.TRAIN["TRAIN_IMG_SIZE"])
        self.epochs = (cfg.TRAIN["YOLO_EPOCHS"] if cfg.MODEL_TYPE["TYPE"]
                       == "YOLOv4" else cfg.TRAIN["Mobilenet_YOLO_EPOCHS"])
        self.eval_epoch = (30 if cfg.MODEL_TYPE["TYPE"] == "YOLOv4" else 50)
        self.train_dataloader = DataLoader(
            self.train_dataset,
            batch_size=cfg.TRAIN["BATCH_SIZE"],
            num_workers=cfg.TRAIN["NUMBER_WORKERS"],
            shuffle=True,
            pin_memory=True,
        )

        self.yolov4 = Build_Model(weight_path=weight_path,
                                  resume=resume,
                                  showatt=self.showatt).to(self.device)

        self.optimizer = optim.SGD(
            self.yolov4.parameters(),
            lr=cfg.TRAIN["LR_INIT"],
            momentum=cfg.TRAIN["MOMENTUM"],
            weight_decay=cfg.TRAIN["WEIGHT_DECAY"],
        )

        self.criterion = YoloV4Loss(
            anchors=cfg.MODEL["ANCHORS"],
            strides=cfg.MODEL["STRIDES"],
            iou_threshold_loss=cfg.TRAIN["IOU_THRESHOLD_LOSS"],
        )

        self.scheduler = cosine_lr_scheduler.CosineDecayLR(
            self.optimizer,
            T_max=self.epochs * len(self.train_dataloader),
            lr_init=cfg.TRAIN["LR_INIT"],
            lr_min=cfg.TRAIN["LR_END"],
            warmup=cfg.TRAIN["WARMUP_EPOCHS"] * len(self.train_dataloader),
        )
        if resume:
            self.__load_resume_weights(weight_path)
Beispiel #6
0
    pin_memory=True,
)

# model
yolov4 = Build_Model(weight_path=weight_path).to(device)

optimizer = optim.SGD(
    yolov4.parameters(),
    lr=cfg.TRAIN["LR_INIT"],
    momentum=cfg.TRAIN["MOMENTUM"],
    weight_decay=cfg.TRAIN["WEIGHT_DECAY"],
)

criterion = YoloV4Loss(
    anchors=cfg.MODEL["ANCHORS"],
    strides=cfg.MODEL["STRIDES"],
    iou_threshold_loss=cfg.TRAIN["IOU_THRESHOLD_LOSS"],
)

scheduler = cosine_lr_scheduler.CosineDecayLR(
    optimizer,
    T_max=epochs * len(train_dataloader),
    lr_init=cfg.TRAIN["LR_INIT"],
    lr_min=cfg.TRAIN["LR_END"],
    warmup=cfg.TRAIN["WARMUP_EPOCHS"] * len(train_dataloader),
)

# Training
for epoch in range(start_epoch, epochs):
    yolov4.train()