Beispiel #1
0
    torch.backends.cudnn.deterministic = True
    np.random.seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)

    # fetch dataloaders
    # fetch dataloaders
    val_dl = dataloader.fetch_dataloader(args.data_dir, args.txt_val, "val",
                                         params)
    # Define the model
    model = get_network(params).to(params.device)

    #num_classes+1 for background.
    metrics = OrderedDict({})
    for metric in params.metrics:
        metrics[metric] = get_metrics(metric, params)

    # Reload weights from the saved file
    model = utils.load_checkpoint(model,
                                  is_best=True,
                                  checkpoint_dir=args.checkpoint_dir)[0]

    # Evaluate
    eval_loss, val_metrics = evaluate(model,
                                      val_dl,
                                      loss_fn=None,
                                      metrics=metrics,
                                      params=params)

    best_json_path = os.path.join(args.model_dir, "logs/evaluation.json")
    for val_metric_name, val_metric_results in val_metrics.items():
    ckpt_target_file_path = os.path.join(args.checkpoint_dir_target, best_ckpt_filename)
    if os.path.exists(ckpt_target_file_path):
        model_target = utils.load_checkpoint(model_target, ckpt_dir=args.checkpoint_dir_target, filename=best_ckpt_filename, is_best=True)[0]
        print("=> loaded target model checkpoint form {}".format(ckpt_target_file_path))
    else:
        print("=> Initializing target model from scratch")
    
    for p in model_source.parameters():
        p.requires_grad = False
    model_source.eval()

    for p in model_target.parameters():
        p.requires_grad = False    
    model_target.eval()

    opt = optim.AdamW(transfer.parameters(), lr=params_transfer.learning_rate)
    lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
        opt, max_lr=params_transfer.learning_rate, steps_per_epoch=len(train_dl), epochs=params_transfer.num_epochs, div_factor=20)

    # fetch loss function and metrics
    loss_fn = get_loss_fn(params_transfer)
    # num_classes+1 for background.
    metrics = OrderedDict({})
    for metric in params_transfer.metrics:
        metrics[metric] = get_metrics(metric, params_transfer)

    # Train the model
    logging.info("Starting training for {} epoch(s)".format(params_transfer.num_epochs))

    train_and_evaluate(model_source, model_target, transfer, train_dl, val_dl_source, val_dl_target, opt, loss_fn, metrics,
                       params_transfer, lr_scheduler, args.checkpoint_dir_transfer, ckpt_filename, log_dir, writer)
            None,
            None,
            ckpt_dir=args.checkpoint_dir_target,
            filename=ckpt_filename)
        print("=> loaded target model checkpoint form {}".format(
            ckpt_target_file_path))
    else:
        print("=> Initializing target model from scratch")

    # fetch loss function and metrics
    loss_fn1 = get_loss_fn(params_source)
    loss_fn2 = get_loss_fn(params_target)

    metrics_depth = OrderedDict({})
    for metric in params_source.metrics:
        metrics_depth[metric] = get_metrics(metric, params_source)

    metrics_segmentation = OrderedDict({})
    for metric in params_target.metrics:
        metrics_segmentation[metric] = get_metrics(metric, params_target)

    # Train the model
    logging.info("Starting training for {} epoch(s)".format(
        params_transfer.num_epochs))

    train_and_evaluate(
        model_source, model_target, transfer, train_dl_all, val_dl_all,
        val_dl_target, opt1, opt2, opt3, loss_fn1, loss_fn2, metrics_depth,
        metrics_segmentation, params_transfer, lr_scheduler1, lr_scheduler2,
        lr_scheduler3, args.checkpoint_dir_source, args.checkpoint_dir_target,
        args.checkpoint_dir_transfer, ckpt_filename, log_dir, writer)