Beispiel #1
0
def run_iter(model, result_row, i_iter, config, valid_generator,
             test_generator):
    logger = logging.getLogger()
    logger.info('-' * 45)
    logger.info(f'iter : {i_iter}')
    flush(logger)

    iter_directory = os.path.join(model.results_path, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)
    result_row['i'] = i_iter
    result_row['n_test_samples'] = config.N_TESTING_SAMPLES
    suffix = f'-mu={config.TRUE.mu:1.2f}_rescale={config.TRUE.rescale}'

    logger.info('Generate testing data')
    test_generator.reset()
    X_test, y_test, w_test = test_generator.generate(
        *config.TRUE, n_samples=config.N_TESTING_SAMPLES)

    # CHEATER :
    cheat_target, cheat_sigma = model.predict(
        X_test, w_test, np.array(config.TRUE.nuisance_parameters))
    result_row['cheat_mu'] = cheat_target
    result_row['cheat_sigma_mu'] = cheat_sigma

    # MEASURE STAT/SYST VARIANCE
    logger.info('MEASURE STAT/SYST VARIANCE')
    conditional_results = make_conditional_estimation(model, X_test, w_test,
                                                      config)
    fname = os.path.join(iter_directory, "no_nuisance.csv")
    conditional_estimate = pd.DataFrame(conditional_results)
    conditional_estimate['i'] = i_iter
    conditional_estimate.to_csv(fname)

    param_sampler = param_generator  # Prior distribution

    # MONTE CARLO
    logger.info('Making {} predictions'.format(NCALL))
    all_pred, all_params = many_predict(model,
                                        X_test,
                                        w_test,
                                        param_sampler,
                                        ncall=NCALL)
    logger.info('Gathering it all')
    mc_data = monte_carlo_data(all_pred, all_params)
    save_monte_carlo(mc_data, iter_directory, ext=suffix)
    target, sigma = monte_carlo_infer(mc_data)

    result_row.update(config.CALIBRATED.to_dict())
    result_row.update(config.CALIBRATED_ERROR.to_dict(suffix=_ERROR))
    result_row.update(config.TRUE.to_dict(suffix=_TRUTH))
    name = config.INTEREST_PARAM_NAME
    result_row[name] = target
    result_row[name + _ERROR] = sigma
    result_row[name + _TRUTH] = config.TRUE.interest_parameters
    logger.info('mu  = {} =vs= {} +/- {}'.format(
        config.TRUE.interest_parameters, target, sigma))
    return result_row.copy(), conditional_estimate
def run_estimation_iter(model, result_row, i_iter, config, valid_generator,
                        test_generator, calibs):
    logger = logging.getLogger()
    logger.info('-' * 45)
    logger.info(f'iter : {i_iter}')
    flush(logger)

    iter_directory = os.path.join(model.results_path, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)
    result_row['i'] = i_iter
    result_row['n_test_samples'] = test_generator.n_samples
    suffix = config.get_suffix()

    logger.info('Generate testing data')
    test_generator.reset()
    X_test, y_test, w_test = test_generator.generate(
        *config.TRUE, n_samples=config.N_TESTING_SAMPLES, no_grad=True)

    # CHEATER :
    cheat_target, cheat_sigma = model.predict(
        X_test, w_test, np.array(config.TRUE.nuisance_parameters))
    result_row['cheat_mu'] = cheat_target
    result_row['cheat_sigma_mu'] = cheat_sigma

    # CALIBRATION
    config = calibrates(calibs, config, X_test, w_test)
    for name, value in config.CALIBRATED.items():
        result_row[name + "_calib"] = value
    for name, value in config.CALIBRATED_ERROR.items():
        result_row[name + "_calib_error"] = value

    param_sampler = lambda: param_generator(config)

    # MONTE CARLO
    logger.info('Making {} predictions'.format(NCALL))
    all_pred, all_params = many_predict(model,
                                        X_test,
                                        w_test,
                                        param_sampler,
                                        ncall=NCALL)
    logger.info('Gathering it all')
    mc_data = monte_carlo_data(all_pred, all_params)
    save_monte_carlo(mc_data, iter_directory, ext=suffix)
    target, sigma = monte_carlo_infer(mc_data)

    result_row.update(config.CALIBRATED.to_dict())
    result_row.update(config.CALIBRATED_ERROR.to_dict(suffix=_ERROR))
    result_row.update(config.TRUE.to_dict(suffix=_TRUTH))
    name = config.INTEREST_PARAM_NAME
    result_row[name] = target
    result_row[name + _ERROR] = sigma
    result_row[name + _TRUTH] = config.TRUE.interest_parameters
    logger.info('mu  = {} =vs= {} +/- {}'.format(
        config.TRUE.interest_parameters, target, sigma))
    return result_row.copy()
Beispiel #3
0
def run_iter(model, result_row, i_iter, config, valid_generator,
             test_generator):
    logger = logging.getLogger()
    logger.info('-' * 45)
    logger.info(f'iter : {i_iter}')
    iter_directory = os.path.join(model.results_path, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)
    result_row['i'] = i_iter
    suffix = config.get_suffix()
    # suffix += f'_nasty_bkg={config.TRUE.nasty_bkg}_sigma_soft={config.TRUE.sigma_soft}'
    logger.info('Generate testing data')
    test_generator.reset()
    X_test, y_test, w_test = test_generator.generate(*config.TRUE,
                                                     n_samples=None)
    # CALIBRATION
    # logger.info('r   = {} =vs= {} +/- {}'.format(config.TRUE_R, r_mean, r_sigma) )
    # logger.info('lam = {} =vs= {} +/- {}'.format(config.TRUE_LAMBDA, lam_mean, lam_sigma) )

    # CHEATER :
    cheat_target, cheat_sigma = model.predict(
        y_test, w_test, np.array(config.TRUE.nuisance_parameters))
    result_row['cheat_mu'] = cheat_target
    result_row['cheat_sigma_mu'] = cheat_sigma

    param_sampler = param_generator

    # MONTE CARLO
    logger.info('Making {} predictions'.format(NCALL))
    all_pred, all_params = many_predict(model,
                                        y_test,
                                        w_test,
                                        param_sampler,
                                        ncall=NCALL)
    logger.info('Gathering it all')
    mc_data = monte_carlo_data(all_pred, all_params)
    save_monte_carlo(mc_data, iter_directory, ext=suffix)
    target, sigma = monte_carlo_infer(mc_data)

    result_row.update(params_to_dict(config.CALIBRATED))
    result_row.update(params_to_dict(config.CALIBRATED_ERROR, ext=_ERROR))
    result_row.update(params_to_dict(config.TRUE, ext=_TRUTH))
    name = config.INTEREST_PARAM_NAME
    result_row[name] = target
    result_row[name + _ERROR] = sigma
    result_row[name + _TRUTH] = config.TRUE.mu
    logger.info('mu  = {} =vs= {} +/- {}'.format(config.TRUE.mu, target,
                                                 sigma))
    return result_row.copy()
Beispiel #4
0
def run_estimation_iter(model, result_row, i_iter, config, valid_generator, test_generator,  calib_r, calib_lam):
    logger = logging.getLogger()
    logger.info('-'*45)
    logger.info(f'iter : {i_iter}')
    flush(logger)

    iter_directory = os.path.join(model.results_path, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)
    result_row['i'] = i_iter
    result_row['n_test_samples'] = config.N_TESTING_SAMPLES
    suffix = f'-mu={config.TRUE.mu:1.2f}_r={config.TRUE.r}_lambda={config.TRUE.lam}'

    logger.info('Generate testing data')
    test_generator.reset()
    X_test, y_test, w_test = test_generator.generate(*config.TRUE, n_samples=config.N_TESTING_SAMPLES)

    # CALIBRATION
    r_mean, r_sigma = calib_r.predict(X_test, w_test)
    lam_mean, lam_sigma = calib_lam.predict(X_test, w_test)
    logger.info('r   = {} =vs= {} +/- {}'.format(config.TRUE.r, r_mean, r_sigma) )
    logger.info('lam = {} =vs= {} +/- {}'.format(config.TRUE.lam, lam_mean, lam_sigma) )
    config.CALIBRATED = Parameter(r_mean, lam_mean, config.CALIBRATED.interest_parameters)
    config.CALIBRATED_ERROR = Parameter(r_sigma, lam_sigma, config.CALIBRATED_ERROR.interest_parameters)

    # CHEATER :
    cheat_target, cheat_sigma = model.predict(X_test, w_test, np.array(config.TRUE.nuisance_parameters))
    result_row['cheat_mu'] = cheat_target
    result_row['cheat_sigma_mu'] = cheat_sigma

    # MONTE CARLO
    logger.info('Making {} predictions'.format(NCALL))
    param_sampler = calib_param_sampler(r_mean, r_sigma, lam_mean, lam_sigma)
    all_pred, all_params = many_predict(model, X_test, w_test, param_sampler, ncall=NCALL)
    logger.info('Gathering it all')
    mc_data = monte_carlo_data(all_pred, all_params)
    save_monte_carlo(mc_data, iter_directory, ext=suffix)
    target, sigma = monte_carlo_infer(mc_data)

    result_row.update(config.CALIBRATED.to_dict())
    result_row.update(config.CALIBRATED_ERROR.to_dict( suffix=_ERROR) )
    result_row.update(config.TRUE.to_dict(suffix=_TRUTH) )
    name = config.INTEREST_PARAM_NAME
    result_row[name] = target
    result_row[name+_ERROR] = sigma
    result_row[name+_TRUTH] = config.TRUE.interest_parameters
    logger.info('mu  = {} =vs= {} +/- {}'.format(config.TRUE.interest_parameters, target, sigma) )
    return result_row.copy()