def main(args): # set seed torch_seed = np.random.randint(low=0, high=1000) np_seed = np.random.randint(low=0, high=1000) py_seed = np.random.randint(low=0, high=1000) np.random.seed(np_seed) random.seed(py_seed) # Build the models # setup evaluation function and load function if args.env_type == 'pendulum': obs_file = None obc_file = None obs_f = False #system = standard_cpp_systems.PSOPTPendulum() #bvp_solver = _sst_module.PSOPTBVPWrapper(system, 2, 1, 0) elif args.env_type == 'cartpole_obs': obs_file = None obc_file = None obs_f = True obs_width = 4.0 step_sz = 0.002 psopt_system = _sst_module.PSOPTCartPole() cpp_propagator = _sst_module.SystemPropagator() #system = standard_cpp_systems.RectangleObs(obs, 4., 'cartpole') dynamics = lambda x, u, t: cpp_propagator.propagate( psopt_system, x, u, t) normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP cae = CAE_cartpole_voxel_2d dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 100 elif args.env_type == 'cartpole_obs_2': obs_file = None obc_file = None obs_f = True obs_width = 4.0 step_sz = 0.002 psopt_system = _sst_module.PSOPTCartPole() cpp_propagator = _sst_module.SystemPropagator() #system = standard_cpp_systems.RectangleObs(obs, 4., 'cartpole') dynamics = lambda x, u, t: cpp_propagator.propagate( psopt_system, x, u, t) normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP2 cae = CAE_cartpole_voxel_2d dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 100 elif args.env_type == 'cartpole_obs_3': obs_file = None obc_file = None obs_f = True obs_width = 4.0 step_sz = 0.002 psopt_system = _sst_module.PSOPTCartPole() cpp_propagator = _sst_module.SystemPropagator() #system = standard_cpp_systems.RectangleObs(obs, 4., 'cartpole') dynamics = lambda x, u, t: cpp_propagator.propagate( psopt_system, x, u, t) normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP4 cae = CAE_cartpole_voxel_2d dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 200 elif args.env_type == 'cartpole_obs_4': obs_file = None obc_file = None obs_f = True obs_width = 4.0 step_sz = 0.002 psopt_system = _sst_module.PSOPTCartPole() cpp_propagator = _sst_module.SystemPropagator() #system = standard_cpp_systems.RectangleObs(obs, 4., 'cartpole') dynamics = lambda x, u, t: cpp_propagator.propagate( psopt_system, x, u, t) normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP3 cae = CAE_cartpole_voxel_2d dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 200 elif args.env_type == 'acrobot_obs': obs_file = None obc_file = None obs_f = True obs_width = 6.0 #system = standard_cpp_systems.RectangleObs(obs_list, args.obs_width, 'acrobot') #bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) mpnet = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size, cae, mlp, None) # load net # load previously trained model if start epoch > 0 model_dir = args.model_dir if args.loss == 'mse': if args.multigoal == 0: model_dir = model_dir + args.env_type + "_lr%f_%s_step_%d/" % ( args.learning_rate, args.opt, args.num_steps) else: model_dir = model_dir + args.env_type + "_lr%f_%s_step_%d_multigoal/" % ( args.learning_rate, args.opt, args.num_steps) else: if args.multigoal == 0: model_dir = model_dir + args.env_type + "_lr%f_%s_loss_%s_step_%d/" % ( args.learning_rate, args.opt, args.loss, args.num_steps) else: model_dir = model_dir + args.env_type + "_lr%f_%s_loss_%s_step_%d_multigoal/" % ( args.learning_rate, args.opt, args.loss, args.num_steps) print(model_dir) if not os.path.exists(model_dir): os.makedirs(model_dir) model_path = 'kmpnet_epoch_%d_direction_%d_step_%d.pkl' % ( args.start_epoch, args.direction, args.num_steps) torch_seed, np_seed, py_seed = 0, 0, 0 if args.start_epoch > 0: #load_net_state(mpnet, os.path.join(args.model_path, model_path)) load_net_state(mpnet, os.path.join(model_dir, model_path)) #torch_seed, np_seed, py_seed = load_seed(os.path.join(args.model_path, model_path)) torch_seed, np_seed, py_seed = load_seed( os.path.join(model_dir, model_path)) # set seed after loading torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) if torch.cuda.is_available(): mpnet.cuda() mpnet.mlp.cuda() mpnet.encoder.cuda() if args.opt == 'Adagrad': mpnet.set_opt(torch.optim.Adagrad, lr=args.learning_rate) elif args.opt == 'Adam': mpnet.set_opt(torch.optim.Adam, lr=args.learning_rate) elif args.opt == 'SGD': mpnet.set_opt(torch.optim.SGD, lr=args.learning_rate, momentum=0.9) elif args.opt == 'ASGD': mpnet.set_opt(torch.optim.ASGD, lr=args.learning_rate) if args.start_epoch > 0: #load_opt_state(mpnet, os.path.join(args.model_path, model_path)) load_opt_state(mpnet, os.path.join(model_dir, model_path)) mpnet.eval() # load data print('loading...') if args.seen_N > 0: seen_test_data = data_loader.load_test_dataset(args.seen_N, args.seen_NP, args.data_folder, obs_f, args.seen_s, args.seen_sp) if args.unseen_N > 0: unseen_test_data = data_loader.load_test_dataset( args.unseen_N, args.unseen_NP, args.data_folder, obs_f, args.unseen_s, args.unseen_sp) # test # testing print('testing...') seen_test_suc_rate = 0. unseen_test_suc_rate = 0. # find path plt.ion() fig = plt.figure() ax = fig.add_subplot(111) ax.set_autoscale_on(True) hl, = ax.plot([], [], 'b') #hl_real, = ax.plot([], [], 'r') def update_line(h, ax, new_data): h.set_data(np.append(h.get_xdata(), new_data[0]), np.append(h.get_ydata(), new_data[1])) #h.set_xdata(np.append(h.get_xdata(), new_data[0])) #h.set_ydata(np.append(h.get_ydata(), new_data[1])) def draw_update_line(ax): ax.relim() ax.autoscale_view() fig.canvas.draw() fig.canvas.flush_events() # randomly pick up a point in the data, and find similar data in the dataset # plot the next point obc, obs, paths, sgs, path_lengths, controls, costs = seen_test_data for envi in range(2): for pathi in range(10): obs_i = obs[envi] new_obs_i = [] obs_i = obs[envi] plan_res_path = [] plan_time_path = [] plan_cost_path = [] data_cost_path = [] for k in range(len(obs_i)): obs_pt = [] obs_pt.append(obs_i[k][0] - obs_width / 2) obs_pt.append(obs_i[k][1] - obs_width / 2) obs_pt.append(obs_i[k][0] - obs_width / 2) obs_pt.append(obs_i[k][1] + obs_width / 2) obs_pt.append(obs_i[k][0] + obs_width / 2) obs_pt.append(obs_i[k][1] + obs_width / 2) obs_pt.append(obs_i[k][0] + obs_width / 2) obs_pt.append(obs_i[k][1] - obs_width / 2) new_obs_i.append(obs_pt) obs_i = new_obs_i # visualization plt.ion() fig = plt.figure() ax = fig.add_subplot(121) ax_vel = fig.add_subplot(122) #ax.set_autoscale_on(True) ax.set_xlim(-30, 30) ax.set_ylim(-np.pi, np.pi) ax_vel.set_xlim(-40, 40) ax_vel.set_ylim(-2, 2) hl, = ax.plot([], [], 'b') #hl_real, = ax.plot([], [], 'r') hl_for, = ax.plot([], [], 'g') hl_back, = ax.plot([], [], 'r') hl_for_mpnet, = ax.plot([], [], 'lightgreen') hl_back_mpnet, = ax.plot([], [], 'salmon') #print(obs) def update_line(h, ax, new_data): new_data = wrap_angle(new_data, propagate_system) h.set_data(np.append(h.get_xdata(), new_data[0]), np.append(h.get_ydata(), new_data[1])) #h.set_xdata(np.append(h.get_xdata(), new_data[0])) #h.set_ydata(np.append(h.get_ydata(), new_data[1])) def remove_last_k(h, ax, k): h.set_data(h.get_xdata()[:-k], h.get_ydata()[:-k]) def draw_update_line(ax): #ax.relim() #ax.autoscale_view() fig.canvas.draw() fig.canvas.flush_events() #plt.show() def wrap_angle(x, system): circular = system.is_circular_topology() res = np.array(x) for i in range(len(x)): if circular[i]: # use our previously saved version res[i] = x[i] - np.floor(x[i] / (2 * np.pi)) * (2 * np.pi) if res[i] > np.pi: res[i] = res[i] - 2 * np.pi return res dx = 1 dtheta = 0.1 feasible_points = [] infeasible_points = [] imin = 0 imax = int(2 * 30. / dx) jmin = 0 jmax = int(2 * np.pi / dtheta) for i in range(imin, imax): for j in range(jmin, jmax): x = np.array([dx * i - 30, 0., dtheta * j - np.pi, 0.]) if IsInCollision(x, obs_i): infeasible_points.append(x) else: feasible_points.append(x) feasible_points = np.array(feasible_points) infeasible_points = np.array(infeasible_points) print('feasible points') print(feasible_points) print('infeasible points') print(infeasible_points) ax.scatter(feasible_points[:, 0], feasible_points[:, 2], c='yellow') ax.scatter(infeasible_points[:, 0], infeasible_points[:, 2], c='pink') #for i in range(len(data)): # update_line(hl, ax, data[i]) draw_update_line(ax) #state_t = start_state xs = paths[envi][pathi] us = controls[envi][pathi] ts = costs[envi][pathi] # propagate data p_start = xs[0] detail_paths = [p_start] detail_controls = [] detail_costs = [] state = [p_start] control = [] cost = [] for k in range(len(us)): #state_i.append(len(detail_paths)-1) max_steps = int(ts[k] / step_sz) accum_cost = 0. #print('p_start:') #print(p_start) #print('data:') #print(paths[i][j][k]) # modify it because of small difference between data and actual propagation p_start = xs[k] state[-1] = xs[k] for step in range(1, max_steps + 1): p_start = dynamics(p_start, us[k], step_sz) p_start = enforce_bounds(p_start) detail_paths.append(p_start) accum_cost += step_sz if (step % 1 == 0) or (step == max_steps): state.append(p_start) #print('control') #print(controls[i][j]) cost.append(accum_cost) accum_cost = 0. #print('p_start:') #print(p_start) #print('data:') #print(paths[i][j][-1]) state[-1] = xs[-1] #print(len(state)) xs_to_plot = np.array(state) for i in range(len(xs_to_plot)): xs_to_plot[i] = wrap_angle(xs_to_plot[i], psopt_system) ax.scatter(xs_to_plot[:, 0], xs_to_plot[:, 2], c='green') # draw start and goal #ax.scatter(start_state[0], goal_state[0], marker='X') draw_update_line(ax) ax_vel.scatter(xs_to_plot[:, 1], xs_to_plot[:, 3], c='green', s=0.1) draw_update_line(ax_vel) plt.waitforbuttonpress() # visualize mPNet path mpnet_paths = [] state = xs[0] #for k in range(int(len(xs_to_plot)/args.num_steps)): for k in range(50): mpnet_paths.append(state) bi = np.concatenate([state, xs[-1]]) bi = np.array([bi]) bi = torch.from_numpy(bi).type(torch.FloatTensor) print(bi) bi = normalize(bi, args.world_size) bi = to_var(bi) if obc is None: bobs = None else: bobs = np.array([obc[envi]]).astype(np.float32) print(bobs.shape) bobs = torch.FloatTensor(bobs) bobs = to_var(bobs) bt = mpnet(bi, bobs).cpu() bt = unnormalize(bt, args.world_size) bt = bt.detach().numpy() print(bt.shape) state = bt[0] print(mpnet_paths) xs_to_plot = np.array(mpnet_paths) print(len(xs_to_plot)) for i in range(len(xs_to_plot)): xs_to_plot[i] = wrap_angle(xs_to_plot[i], psopt_system) ax.scatter(xs_to_plot[:, 0], xs_to_plot[:, 2], c='lightgreen') # draw start and goal #ax.scatter(start_state[0], goal_state[0], marker='X') draw_update_line(ax) ax_vel.scatter(xs_to_plot[:, 1], xs_to_plot[:, 3], c='lightgreen') draw_update_line(ax_vel) plt.waitforbuttonpress()
def main(args): # set seed print(args.model_path) torch_seed = np.random.randint(low=0, high=1000) np_seed = np.random.randint(low=0, high=1000) py_seed = np.random.randint(low=0, high=1000) torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) # Build the models if torch.cuda.is_available(): torch.cuda.set_device(args.device) # setup evaluation function and load function if args.env_type == 'pendulum': IsInCollision = pendulum.IsInCollision normalize = pendulum.normalize unnormalize = pendulum.unnormalize obs_file = None obc_file = None dynamics = pendulum.dynamics jax_dynamics = pendulum.jax_dynamics enforce_bounds = pendulum.enforce_bounds cae = cae_identity mlp = MLP obs_f = False #system = standard_cpp_systems.PSOPTPendulum() #bvp_solver = _sst_module.PSOPTBVPWrapper(system, 2, 1, 0) elif args.env_type == 'cartpole_obs': IsInCollision = cartpole.IsInCollision normalize = cartpole.normalize unnormalize = cartpole.unnormalize obs_file = None obc_file = None dynamics = cartpole.dynamics jax_dynamics = cartpole.jax_dynamics enforce_bounds = cartpole.enforce_bounds cae = CAE_acrobot_voxel_2d mlp = mlp_acrobot.MLP obs_f = True #system = standard_cpp_systems.RectangleObs(obs_list, args.obs_width, 'cartpole') #bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) elif args.env_type == 'acrobot_obs': IsInCollision = acrobot_obs.IsInCollision #IsInCollision = lambda x, obs: False normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize obs_file = None obc_file = None system = _sst_module.PSOPTAcrobot() cpp_propagator = _sst_module.SystemPropagator() dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) xdot = acrobot_obs.dynamics jax_dynamics = acrobot_obs.jax_dynamics enforce_bounds = acrobot_obs.enforce_bounds cae = CAE_acrobot_voxel_2d mlp = mlp_acrobot.MLP obs_f = True bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) step_sz = 0.02 num_steps = 21 traj_opt = lambda x0, x1, step_sz, num_steps, x_init, u_init, t_init: bvp_solver.solve( x0, x1, 50, num_steps, step_sz * 1, step_sz * (num_steps - 1), x_init, u_init, t_init) goal_S0 = np.diag([1., 1., 0, 0]) #goal_S0 = np.identity(4) goal_rho0 = 1.0 elif args.env_type == 'acrobot_obs_2': IsInCollision = acrobot_obs.IsInCollision normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize obs_file = None obc_file = None system = _sst_module.PSOPTAcrobot() cpp_propagator = _sst_module.SystemPropagator() dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) xdot = acrobot_obs.dynamics jax_dynamics = acrobot_obs.jax_dynamics enforce_bounds = acrobot_obs.enforce_bounds cae = CAE_acrobot_voxel_2d_2 mlp = mlp_acrobot.MLP2 obs_f = True bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) step_sz = 0.02 num_steps = 21 traj_opt = lambda x0, x1, step_sz, num_steps, x_init, u_init, t_init: bvp_solver.solve( x0, x1, 400, num_steps, step_sz * 1, step_sz * (num_steps - 1), x_init, u_init, t_init) goal_S0 = np.diag([1., 1., 0, 0]) #goal_S0 = np.identity(4) goal_rho0 = 1.0 elif args.env_type == 'acrobot_obs_3': IsInCollision = acrobot_obs.IsInCollision normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize obs_file = None obc_file = None system = _sst_module.PSOPTAcrobot() cpp_propagator = _sst_module.SystemPropagator() dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) xdot = acrobot_obs.dynamics jax_dynamics = acrobot_obs.jax_dynamics enforce_bounds = acrobot_obs.enforce_bounds mlp = mlp_acrobot.MLP3 cae = CAE_acrobot_voxel_2d_2 obs_f = True bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) step_sz = 0.02 num_steps = 21 traj_opt = lambda x0, x1, step_sz, num_steps, x_init, u_init, t_init: bvp_solver.solve( x0, x1, 400, num_steps, step_sz * 1, step_sz * (num_steps - 1), x_init, u_init, t_init) goal_S0 = np.diag([1., 1., 0, 0]) #goal_S0 = np.identity(4) goal_rho0 = 1.0 elif args.env_type == 'acrobot_obs_5': IsInCollision = acrobot_obs.IsInCollision normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize obs_file = None obc_file = None system = _sst_module.PSOPTAcrobot() cpp_propagator = _sst_module.SystemPropagator() dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) xdot = acrobot_obs.dynamics jax_dynamics = acrobot_obs.jax_dynamics enforce_bounds = acrobot_obs.enforce_bounds cae = CAE_acrobot_voxel_2d_3 mlp = mlp_acrobot.MLP obs_f = True bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) step_sz = 0.02 num_steps = 21 traj_opt = lambda x0, x1, step_sz, num_steps, x_init, u_init, t_init: bvp_solver.solve( x0, x1, 400, num_steps, step_sz * 1, step_sz * (num_steps - 1), x_init, u_init, t_init) goal_S0 = np.diag([1., 1., 0, 0]) #goal_S0 = np.identity(4) goal_rho0 = 1.0 elif args.env_type == 'acrobot_obs_6': IsInCollision = acrobot_obs.IsInCollision normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize obs_file = None obc_file = None xdot = acrobot_obs.dynamics system = _sst_module.PSOPTAcrobot() cpp_propagator = _sst_module.SystemPropagator() dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) jax_dynamics = acrobot_obs.jax_dynamics enforce_bounds = acrobot_obs.enforce_bounds cae = CAE_acrobot_voxel_2d_3 mlp = mlp_acrobot.MLP4 obs_f = True bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) step_sz = 0.02 num_steps = 21 traj_opt = lambda x0, x1, step_sz, num_steps, x_init, u_init, t_init: bvp_solver.solve( x0, x1, 400, num_steps, step_sz * 1, step_sz * (num_steps - 1), x_init, u_init, t_init) goal_S0 = np.diag([1., 1., 0, 0]) #goal_S0 = np.identity(4) goal_rho0 = 1.0 elif args.env_type == 'acrobot_obs_6': IsInCollision = acrobot_obs.IsInCollision normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize obs_file = None obc_file = None xdot = acrobot_obs.dynamics system = _sst_module.PSOPTAcrobot() cpp_propagator = _sst_module.SystemPropagator() dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) jax_dynamics = acrobot_obs.jax_dynamics enforce_bounds = acrobot_obs.enforce_bounds mlp = mlp_acrobot.MLP5 cae = CAE_acrobot_voxel_2d_3 obs_f = True bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) step_sz = 0.02 num_steps = 21 traj_opt = lambda x0, x1, step_sz, num_steps, x_init, u_init, t_init: bvp_solver.solve( x0, x1, 400, num_steps, step_sz * 1, step_sz * (num_steps - 1), x_init, u_init, t_init) goal_S0 = np.diag([1., 1., 0, 0]) #goal_S0 = np.identity(4) goal_rho0 = 1.0 elif args.env_type == 'acrobot_obs_8': IsInCollision = acrobot_obs.IsInCollision #IsInCollision = lambda x, obs: False normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize obs_file = None obc_file = None system = _sst_module.PSOPTAcrobot() cpp_propagator = _sst_module.SystemPropagator() dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) xdot = acrobot_obs.dynamics jax_dynamics = acrobot_obs.jax_dynamics enforce_bounds = acrobot_obs.enforce_bounds cae = CAE_acrobot_voxel_2d_3 mlp = mlp_acrobot.MLP6 obs_f = True bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) step_sz = 0.02 #num_steps = 21 num_steps = 21 #args.num_steps*2 traj_opt = lambda x0, x1, step_sz, num_steps, x_init, u_init, t_init: bvp_solver.solve( x0, x1, 400, num_steps, step_sz * 1, step_sz * (num_steps - 1), x_init, u_init, t_init) #traj_opt = lambda x0, x1, step_sz, num_steps, x_init, u_init, t_init: #def cem_trajopt(x0, x1, step_sz, num_steps, x_init, u_init, t_init): # u, t = acrobot_obs.trajopt(x0, x1, 500, num_steps, step_sz*1, step_sz*(num_steps-1), x_init, u_init, t_init) # xs, us, dts, valid = propagate(x0, u, t, dynamics=dynamics, enforce_bounds=enforce_bounds, IsInCollision=lambda x: False, system=system, step_sz=step_sz) # return xs, us, dts #traj_opt = cem_trajopt goal_S0 = np.diag([1., 1., 0, 0]) goal_rho0 = 1.0 mpNet0 = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size, cae, mlp) mpNet1 = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size, cae, mlp) # load previously trained model if start epoch > 0 #model_path='kmpnet_epoch_%d_direction_0_step_%d.pkl' %(args.start_epoch, args.num_steps) model_path = 'kmpnet_epoch_%d_direction_0.pkl' % (args.start_epoch) if args.start_epoch > 0: load_net_state(mpNet0, os.path.join(args.model_path, model_path)) torch_seed, np_seed, py_seed = load_seed( os.path.join(args.model_path, model_path)) # set seed after loading torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) if torch.cuda.is_available(): mpNet0.cuda() mpNet0.mlp.cuda() mpNet0.encoder.cuda() if args.opt == 'Adagrad': mpNet0.set_opt(torch.optim.Adagrad, lr=args.learning_rate) elif args.opt == 'Adam': mpNet0.set_opt(torch.optim.Adam, lr=args.learning_rate) elif args.opt == 'SGD': mpNet0.set_opt(torch.optim.SGD, lr=args.learning_rate, momentum=0.9) if args.start_epoch > 0: load_opt_state(mpNet0, os.path.join(args.model_path, model_path)) # load previously trained model if start epoch > 0 #model_path='kmpnet_epoch_%d_direction_1_step_%d.pkl' %(args.start_epoch, args.num_steps) model_path = 'kmpnet_epoch_%d_direction_1.pkl' % (args.start_epoch) if args.start_epoch > 0: load_net_state(mpNet1, os.path.join(args.model_path, model_path)) torch_seed, np_seed, py_seed = load_seed( os.path.join(args.model_path, model_path)) # set seed after loading torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) if torch.cuda.is_available(): mpNet1.cuda() mpNet1.mlp.cuda() mpNet1.encoder.cuda() if args.opt == 'Adagrad': mpNet1.set_opt(torch.optim.Adagrad, lr=args.learning_rate) elif args.opt == 'Adam': mpNet1.set_opt(torch.optim.Adam, lr=args.learning_rate) elif args.opt == 'SGD': mpNet1.set_opt(torch.optim.SGD, lr=args.learning_rate, momentum=0.9) if args.start_epoch > 0: load_opt_state(mpNet1, os.path.join(args.model_path, model_path)) # define informer circular = system.is_circular_topology() def informer(env, x0, xG, direction): x0_x = torch.from_numpy(x0.x).type(torch.FloatTensor) xG_x = torch.from_numpy(xG.x).type(torch.FloatTensor) x0_x = normalize_func(x0_x) xG_x = normalize_func(xG_x) if torch.cuda.is_available(): x0_x = x0_x.cuda() xG_x = xG_x.cuda() if direction == 0: x = torch.cat([x0_x, xG_x], dim=0) mpNet = mpNet0 if torch.cuda.is_available(): x = x.cuda() next_state = mpNet(x.unsqueeze(0), env.unsqueeze(0)).cpu().data next_state = unnormalize_func(next_state).numpy()[0] delta_x = next_state - x0.x # can be either clockwise or counterclockwise, take shorter one for i in range(len(delta_x)): if circular[i]: delta_x[i] = delta_x[i] - np.floor( delta_x[i] / (2 * np.pi)) * (2 * np.pi) if delta_x[i] > np.pi: delta_x[i] = delta_x[i] - 2 * np.pi # randomly pick either direction rand_d = np.random.randint(2) if rand_d < 1 and np.abs(delta_x[i]) >= np.pi * 0.5: if delta_x[i] > 0.: delta_x[i] = delta_x[i] - 2 * np.pi if delta_x[i] <= 0.: delta_x[i] = delta_x[i] + 2 * np.pi res = Node(x0.x + delta_x) cov = np.diag([0.02, 0.02, 0.02, 0.02]) #mean = next_state #next_state = np.random.multivariate_normal(mean=next_state,cov=cov) mean = np.zeros(next_state.shape) rand_x_init = np.random.multivariate_normal(mean=mean, cov=cov, size=num_steps) rand_x_init[0] = rand_x_init[0] * 0. rand_x_init[-1] = rand_x_init[-1] * 0. x_init = np.linspace(x0.x, x0.x + delta_x, num_steps) + rand_x_init ## TODO: : change this to general case u_init_i = np.random.uniform(low=[-4.], high=[4], size=(num_steps, 1)) u_init = u_init_i #u_init_i = control[max_d_i] cost_i = (num_steps - 1) * step_sz #TOEDIT #u_init = np.repeat(u_init_i, num_steps, axis=0).reshape(-1,len(u_init_i)) #u_init = u_init + np.random.normal(scale=1., size=u_init.shape) t_init = np.linspace(0, cost_i, num_steps) """ print('init:') print('x_init:') print(x_init) print('u_init:') print(u_init) print('t_init:') print(t_init) print('xw:') print(next_state) """ else: x = torch.cat([x0_x, xG_x], dim=0) mpNet = mpNet1 next_state = mpNet(x.unsqueeze(0), env.unsqueeze(0)).cpu().data next_state = unnormalize_func(next_state).numpy()[0] delta_x = next_state - x0.x # can be either clockwise or counterclockwise, take shorter one for i in range(len(delta_x)): if circular[i]: delta_x[i] = delta_x[i] - np.floor( delta_x[i] / (2 * np.pi)) * (2 * np.pi) if delta_x[i] > np.pi: delta_x[i] = delta_x[i] - 2 * np.pi # randomly pick either direction rand_d = np.random.randint(2) if rand_d < 1 and np.abs(delta_x[i]) >= np.pi * 0.5: if delta_x[i] > 0.: delta_x[i] = delta_x[i] - 2 * np.pi elif delta_x[i] <= 0.: delta_x[i] = delta_x[i] + 2 * np.pi #next_state = state[max_d_i] + delta_x next_state = x0.x + delta_x res = Node(next_state) # initial: from max_d_i to max_d_i+1 x_init = np.linspace(next_state, x0.x, num_steps) + rand_x_init # action: copy over to number of steps u_init_i = np.random.uniform(low=[-4.], high=[4], size=(num_steps, 1)) u_init = u_init_i cost_i = (num_steps - 1) * step_sz #u_init = np.repeat(u_init_i, num_steps, axis=0).reshape(-1,len(u_init_i)) #u_init = u_init + np.random.normal(scale=1., size=u_init.shape) t_init = np.linspace(0, cost_i, num_steps) return res, x_init, u_init, t_init def init_informer(env, x0, xG, direction): if direction == 0: next_state = xG.x delta_x = next_state - x0.x # can be either clockwise or counterclockwise, take shorter one for i in range(len(delta_x)): if circular[i]: delta_x[i] = delta_x[i] - np.floor( delta_x[i] / (2 * np.pi)) * (2 * np.pi) if delta_x[i] > np.pi: delta_x[i] = delta_x[i] - 2 * np.pi # randomly pick either direction rand_d = np.random.randint(2) #print('inside init_informer') #print('delta_x[%d]: %f' % (i, delta_x[i])) if rand_d < 1 and np.abs(delta_x[i]) >= np.pi * 0.9: if delta_x[i] > 0.: delta_x[i] = delta_x[i] - 2 * np.pi if delta_x[i] <= 0.: delta_x[i] = delta_x[i] + 2 * np.pi res = Node(next_state) cov = np.diag([0.02, 0.02, 0.02, 0.02]) #mean = next_state #next_state = np.random.multivariate_normal(mean=next_state,cov=cov) mean = np.zeros(next_state.shape) rand_x_init = np.random.multivariate_normal(mean=mean, cov=cov, size=num_steps) rand_x_init[0] = rand_x_init[0] * 0. rand_x_init[-1] = rand_x_init[-1] * 0. x_init = np.linspace(x0.x, x0.x + delta_x, num_steps) + rand_x_init ## TODO: : change this to general case u_init_i = np.random.uniform(low=[-4.], high=[4], size=(num_steps, 1)) u_init = u_init_i #u_init_i = control[max_d_i] #cost_i = 10*step_sz cost_i = (num_steps - 1) * step_sz #u_init = np.repeat(u_init_i, num_steps, axis=0).reshape(-1,len(u_init_i)) #u_init = u_init + np.random.normal(scale=1., size=u_init.shape) t_init = np.linspace(0, cost_i, num_steps) else: next_state = xG.x delta_x = x0.x - next_state # can be either clockwise or counterclockwise, take shorter one for i in range(len(delta_x)): if circular[i]: delta_x[i] = delta_x[i] - np.floor( delta_x[i] / (2 * np.pi)) * (2 * np.pi) if delta_x[i] > np.pi: delta_x[i] = delta_x[i] - 2 * np.pi # randomly pick either direction rand_d = np.random.randint(2) if rand_d < 1 and np.abs(delta_x[i]) >= np.pi * 0.5: if delta_x[i] > 0.: delta_x[i] = delta_x[i] - 2 * np.pi elif delta_x[i] <= 0.: delta_x[i] = delta_x[i] + 2 * np.pi #next_state = state[max_d_i] + delta_x res = Node(next_state) # initial: from max_d_i to max_d_i+1 x_init = np.linspace(next_state, next_state + delta_x, num_steps) + rand_x_init # action: copy over to number of steps u_init_i = np.random.uniform(low=[-4.], high=[4], size=(num_steps, 1)) u_init = u_init_i cost_i = (num_steps - 1) * step_sz #u_init = np.repeat(u_init_i, num_steps, axis=0).reshape(-1,len(u_init_i)) #u_init = u_init + np.random.normal(scale=1., size=u_init.shape) t_init = np.linspace(0, cost_i, num_steps) return x_init, u_init, t_init # load data print('loading...') if args.seen_N > 0: seen_test_data = data_loader.load_test_dataset(args.seen_N, args.seen_NP, args.data_folder, obs_f, args.seen_s, args.seen_sp) if args.unseen_N > 0: unseen_test_data = data_loader.load_test_dataset( args.unseen_N, args.unseen_NP, args.data_folder, obs_f, args.unseen_s, args.unseen_sp) # test # testing print('testing...') seen_test_suc_rate = 0. unseen_test_suc_rate = 0. T = 1 for _ in range(T): # unnormalize function normalize_func = lambda x: normalize(x, args.world_size) unnormalize_func = lambda x: unnormalize(x, args.world_size) # seen if args.seen_N > 0: time_file = os.path.join( args.model_path, 'time_seen_epoch_%d_mlp.p' % (args.start_epoch)) fes_path_, valid_path_ = eval_tasks( mpNet0, mpNet1, seen_test_data, args.model_path, time_file, IsInCollision, normalize_func, unnormalize_func, informer, init_informer, system, dynamics, xdot, jax_dynamics, enforce_bounds, traj_opt, step_sz, num_steps) valid_path = valid_path_.flatten() fes_path = fes_path_.flatten( ) # notice different environments are involved seen_test_suc_rate += fes_path.sum() / valid_path.sum() # unseen if args.unseen_N > 0: time_file = os.path.join( args.model_path, 'time_unseen_epoch_%d_mlp.p' % (args.start_epoch)) fes_path_, valid_path_ = eval_tasks( mpNet0, mpNet1, unseen_test_data, args.model_path, time_file, IsInCollision, normalize_func, unnormalize_func, informer, init_informer, system, dynamics, xdot, jax_dynamics, enforce_bounds, traj_opt, step_sz, num_steps) valid_path = valid_path_.flatten() fes_path = fes_path_.flatten( ) # notice different environments are involved unseen_test_suc_rate += fes_path.sum() / valid_path.sum() if args.seen_N > 0: seen_test_suc_rate = seen_test_suc_rate / T f = open( os.path.join(args.model_path, 'seen_accuracy_epoch_%d.txt' % (args.start_epoch)), 'w') f.write(str(seen_test_suc_rate)) f.close() if args.unseen_N > 0: unseen_test_suc_rate = unseen_test_suc_rate / T # Save the models f = open( os.path.join(args.model_path, 'unseen_accuracy_epoch_%d.txt' % (args.start_epoch)), 'w') f.write(str(unseen_test_suc_rate)) f.close()
def main(args): # set seed print(args.model_path) torch_seed = np.random.randint(low=0, high=1000) np_seed = np.random.randint(low=0, high=1000) py_seed = np.random.randint(low=0, high=1000) torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) # Build the models if torch.cuda.is_available(): torch.cuda.set_device(args.device) # setup evaluation function and load function if args.env_type == 'pendulum': IsInCollision = pendulum.IsInCollision normalize = pendulum.normalize unnormalize = pendulum.unnormalize obs_file = None obc_file = None dynamics = pendulum.dynamics jax_dynamics = pendulum.jax_dynamics enforce_bounds = pendulum.enforce_bounds cae = cae_identity mlp = MLP obs_f = False #system = standard_cpp_systems.PSOPTPendulum() #bvp_solver = _sst_module.PSOPTBVPWrapper(system, 2, 1, 0) elif args.env_type == 'cartpole_obs': IsInCollision = cartpole.IsInCollision normalize = cartpole.normalize unnormalize = cartpole.unnormalize obs_file = None obc_file = None dynamics = cartpole.dynamics jax_dynamics = cartpole.jax_dynamics enforce_bounds = cartpole.enforce_bounds cae = CAE_acrobot_voxel_2d mlp = mlp_acrobot.MLP obs_f = True #system = standard_cpp_systems.RectangleObs(obs_list, args.obs_width, 'cartpole') #bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) elif args.env_type == 'acrobot_obs': system = _sst_module.PSOPTAcrobot() IsInCollision = acrobot_obs.IsInCollision normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize obs_file = None obc_file = None cpp_propagator = _sst_module.SystemPropagator() dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) jax_dynamics = acrobot_obs.jax_dynamics enforce_bounds = acrobot_obs.enforce_bounds cae = CAE_acrobot_voxel_2d mlp = mlp_acrobot.MLP obs_f = True #system = standard_cpp_systems.RectangleObs(obs_list, args.obs_width, 'acrobot') #bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) elif args.env_type == 'acrobot_obs_2': IsInCollision = acrobot_obs.IsInCollision normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize obs_file = None obc_file = None cpp_propagator = _sst_module.SystemPropagator() dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) jax_dynamics = acrobot_obs.jax_dynamics enforce_bounds = acrobot_obs.enforce_bounds cae = CAE_acrobot_voxel_2d_2 mlp = mlp_acrobot.MLP2 obs_f = True #system = standard_cpp_systems.RectangleObs(obs_list, args.obs_width, 'acrobot') #bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) elif args.env_type == 'acrobot_obs_8': system = _sst_module.PSOPTAcrobot() IsInCollision = acrobot_obs.IsInCollision normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize obs_file = None obc_file = None cpp_propagator = _sst_module.SystemPropagator() dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) jax_dynamics = acrobot_obs.jax_dynamics enforce_bounds = acrobot_obs.enforce_bounds mlp = mlp_acrobot.MLP6 cae = CAE_acrobot_voxel_2d_3 obs_f = True #system = standard_cpp_systems.RectangleObs(obs_list, args.obs_width, 'acrobot') #bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) jac_A = jax.jacfwd(jax_dynamics, argnums=0) jac_B = jax.jacfwd(jax_dynamics, argnums=1) mpNet0 = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size, cae, mlp) mpNet1 = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size, cae, mlp) # load previously trained model if start epoch > 0 model_path = 'kmpnet_epoch_%d_direction_0.pkl' % (args.start_epoch) if args.start_epoch > 0: load_net_state(mpNet0, os.path.join(args.model_path, model_path)) torch_seed, np_seed, py_seed = load_seed( os.path.join(args.model_path, model_path)) # set seed after loading torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) if torch.cuda.is_available(): mpNet0.cuda() mpNet0.mlp.cuda() mpNet0.encoder.cuda() if args.opt == 'Adagrad': mpNet0.set_opt(torch.optim.Adagrad, lr=args.learning_rate) elif args.opt == 'Adam': mpNet0.set_opt(torch.optim.Adam, lr=args.learning_rate) elif args.opt == 'SGD': mpNet0.set_opt(torch.optim.SGD, lr=args.learning_rate, momentum=0.9) if args.start_epoch > 0: load_opt_state(mpNet0, os.path.join(args.model_path, model_path)) # load previously trained model if start epoch > 0 model_path = 'kmpnet_epoch_%d_direction_1.pkl' % (args.start_epoch) if args.start_epoch > 0: load_net_state(mpNet1, os.path.join(args.model_path, model_path)) torch_seed, np_seed, py_seed = load_seed( os.path.join(args.model_path, model_path)) # set seed after loading torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) if torch.cuda.is_available(): mpNet1.cuda() mpNet1.mlp.cuda() mpNet1.encoder.cuda() if args.opt == 'Adagrad': mpNet1.set_opt(torch.optim.Adagrad, lr=args.learning_rate) elif args.opt == 'Adam': mpNet1.set_opt(torch.optim.Adam, lr=args.learning_rate) elif args.opt == 'SGD': mpNet1.set_opt(torch.optim.SGD, lr=args.learning_rate, momentum=0.9) if args.start_epoch > 0: load_opt_state(mpNet1, os.path.join(args.model_path, model_path)) _, waypoint_dataset, waypoint_targets, _, _, _, _, _ = data_loader.load_train_dataset( 1, 2, args.data_folder, obs_f, 1, dynamics, enforce_bounds, system, 0.02, 20) # load data print('loading...') if args.seen_N > 0: seen_test_data = data_loader.load_test_dataset(args.seen_N, args.seen_NP, args.data_folder, obs_f, args.seen_s, args.seen_sp) if args.unseen_N > 0: unseen_test_data = data_loader.load_test_dataset( args.unseen_N, args.unseen_NP, args.data_folder, obs_f, args.unseen_s, args.unseen_sp) # test # testing print('testing...') seen_test_suc_rate = 0. unseen_test_suc_rate = 0. T = 1 # unnormalize function normalize_func = lambda x: normalize(x, args.world_size) unnormalize_func = lambda x: unnormalize(x, args.world_size) # seen if args.seen_N > 0: time_file = os.path.join( args.model_path, 'time_seen_epoch_%d_mlp.p' % (args.start_epoch)) fes_path_, valid_path_ = eval_tasks_mpnet( mpNet0, mpNet1, args.env_type, seen_test_data, args.model_path, 'seen', normalize_func, unnormalize_func, dynamics, jac_A, jac_B, enforce_bounds, IsInCollision) # unseen if args.unseen_N > 0: time_file = os.path.join( args.model_path, 'time_unseen_epoch_%d_mlp.p' % (args.start_epoch)) fes_path_, valid_path_ = eval_tasks_mpnet( mpNet0, mpNet1, args.env_type, unseen_test_data, args.model_path, 'unseen', normalize_func, unnormalize_func, dynamics, jac_A, jac_B, enforce_bounds, IsInCollision)
def main(args): # load MPNet #global hl if torch.cuda.is_available(): torch.cuda.set_device(args.device) if args.debug: from sparse_rrt import _sst_module from plan_utility import cart_pole, cart_pole_obs, pendulum, acrobot_obs from tools import data_loader cpp_propagator = _sst_module.SystemPropagator() if args.env_type == 'pendulum': if args.debug: normalize = pendulum.normalize unnormalize = pendulum.unnormalize system = standard_cpp_systems.PSOPTPendulum() dynamics = None enforce_bounds = None step_sz = 0.002 num_steps = 20 elif args.env_type == 'cartpole': if args.debug: normalize = cart_pole.normalize unnormalize = cart_pole.unnormalize dynamics = cartpole.dynamics system = _sst_module.CartPole() enforce_bounds = cartpole.enforce_bounds step_sz = 0.002 num_steps = 20 elif args.env_type == 'cartpole_obs': if args.debug: normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 20 mlp = mlp_cartpole.MLP cae = CAE_cartpole_voxel_2d elif args.env_type == 'acrobot_obs': if args.debug: normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 mlp = mlp_acrobot.MLP cae = CAE_acrobot_voxel_2d if args.loss == 'mse': loss_f = nn.MSELoss() #loss_f = mse_loss elif args.loss == 'l1_smooth': loss_f = nn.SmoothL1Loss() #loss_f = l1_smooth_loss elif args.loss == 'mse_decoupled': def mse_decoupled(y1, y2): # for angle terms, wrap it to -pi~pi l_0 = torch.abs(y1[:,0] - y2[:,0]) l_1 = torch.abs(y1[:,1] - y2[:,1]) l_2 = torch.abs(y1[:,2] - y2[:,2]) # angular dimension l_3 = torch.abs(y1[:,3] - y2[:,3]) cond = l_2 > np.pi l_2 = torch.where(cond, 2*np.pi-l_2, l_2) l_0 = torch.mean(l_0) l_1 = torch.mean(l_1) l_2 = torch.mean(l_2) l_3 = torch.mean(l_3) return torch.stack([l_0, l_1, l_2, l_3]) loss_f = mse_decoupled mpnet_pnet = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size // 2, cae, mlp, loss_f) mpnet_vnet = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size // 2, cae, mlp, loss_f) mpnet_pos_vel = PosVelKMPNet(mpnet_p, mpnet_v) # load net # load previously trained model if start epoch > 0 model_dir = args.model_dir if args.loss == 'mse': if args.multigoal == 0: model_dir = model_dir+args.env_type+"_lr%f_%s_step_%d/" % (args.learning_rate, args.opt, args.num_steps) else: model_dir = model_dir+args.env_type+"_lr%f_%s_step_%d_multigoal/" % (args.learning_rate, args.opt, args.num_steps) else: if args.multigoal == 0: model_dir = model_dir+args.env_type+"_lr%f_%s_loss_%s_step_%d/" % (args.learning_rate, args.opt, args.loss, args.num_steps) else: model_dir = model_dir+args.env_type+"_lr%f_%s_loss_%s_step_%d_multigoal/" % (args.learning_rate, args.opt, args.loss, args.num_steps) if not os.path.exists(model_dir): os.makedirs(model_dir) model_pnet_path='kmpnet_pnet_epoch_%d_direction_%d_step_%d.pkl' %(args.start_epoch, args.direction, args.num_steps) model_vnet_path='kmpnet_vnet_epoch_%d_direction_%d_step_%d.pkl' %(args.start_epoch, args.direction, args.num_steps) torch_seed, np_seed, py_seed = 0, 0, 0 if args.start_epoch > 0: #load_net_state(mpnet, os.path.join(args.model_path, model_path)) load_net_state(mpnet_p, os.path.join(model_dir, model_pnet_path)) load_net_state(mpnet_v, os.path.join(model_dir, model_vnet_path)) #torch_seed, np_seed, py_seed = load_seed(os.path.join(args.model_path, model_path)) torch_seed, np_seed, py_seed = load_seed(os.path.join(model_dir, model_pnet_path)) # set seed after loading torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) if torch.cuda.is_available(): mpnet_pnet.cuda() mpnet_pnet.mlp.cuda() mpnet_pnet.encoder.cuda() mpnet_vnet.cuda() mpnet_vnet.mlp.cuda() mpnet_vnet.encoder.cuda() # load train and test data print('loading...') if args.debug: obs, cost_dataset, cost_targets, env_indices, \ _, _, _, _ = data_loader.load_train_dataset_cost(N=args.no_env, NP=args.no_motion_paths, data_folder=args.path_folder, obs_f=True, direction=args.direction, dynamics=dynamics, enforce_bounds=enforce_bounds, system=system, step_sz=step_sz, num_steps=args.num_steps) # randomize the dataset before training data=list(zip(cost_dataset,cost_targets,env_indices)) random.shuffle(data) dataset,targets,env_indices=list(zip(*data)) dataset = list(dataset) targets = list(targets) env_indices = list(env_indices) dataset = np.array(dataset) targets = np.array(targets) env_indices = np.array(env_indices) # record bi = dataset.astype(np.float32) print('bi shape:') print(bi.shape) bt = targets bi = torch.FloatTensor(bi) bt = torch.FloatTensor(bt) bi = normalize(bi, args.world_size) bi=to_var(bi) bt=to_var(bt) if obs is None: bobs = None else: bobs = obs[env_indices].astype(np.float32) bobs = torch.FloatTensor(bobs) bobs = to_var(bobs) else: bobs = np.random.rand(1,1,args.AE_input_size,args.AE_input_size) bobs = torch.from_numpy(bobs).type(torch.FloatTensor) bobs = to_var(bobs) bi = np.random.rand(1, args.total_input_size) bt = np.random.rand(1, args.output_size) bi = torch.from_numpy(bi).type(torch.FloatTensor) bt = torch.from_numpy(bt).type(torch.FloatTensor) bi = to_var(bi) bt = to_var(bt) # set to training model to enable dropout mpnet.train() #mpnet.eval() MLP = mpnet.mlp encoder = mpnet.encoder traced_encoder = torch.jit.trace(encoder, (bobs)) encoder_output = encoder(bobs) mlp_input = torch.cat((encoder_output, bi), 1) traced_MLP = torch.jit.trace(MLP, (mlp_input)) traced_encoder.save('%s_encoder_lr%f_epoch_%d_step_%d.pt' % (args.env_type, args.learning_rate, args.start_epoch, args.num_steps)) traced_MLP.save('%s_MLP_lr%f_epoch_%d_step_%d.pt' % (args.env_type, args.learning_rate, args.start_epoch, args.num_steps)) #traced_encoder.save("%s_encoder_epoch_%d.pt" % (args.env_type, args.start_epoch)) #traced_MLP.save("%s_MLP_epoch_%d.pt" % (args.env_type, args.start_epoch)) # test the traced model serilized_encoder = torch.jit.script(encoder) serilized_MLP = torch.jit.script(MLP) serilized_encoder_output = serilized_encoder(bobs) serilized_MLP_input = torch.cat((serilized_encoder_output, bi), 1) serilized_MLP_output = serilized_MLP(serilized_MLP_input) print('encoder output: ', serilized_encoder_output) print('MLP output: ', serilized_MLP_output) print('data: ', bt)
def main(args): # Set this value to export models for continual learning or batch training #system = _sst_module.PSOPTAcrobot() #dynamics = acrobot_obs.dynamics #dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) #enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 # Get the right architecture which was used for continual learning mlp = mlp_acrobot.MLP CAE = CAE_acrobot_voxel_2d # make the big model mpNet = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size, CAE, mlp) # The model that performed well originally, load into the big end2end model model_dir = args.model_dir model_dir = model_dir + "acrobot_obs_lr%f_%s/" % (args.learning_rate, args.opt) model_path = 'kmpnet_epoch_%d_direction_%d.pkl' % (args.start_epoch, args.direction) load_net_state(mpNet, os.path.join(model_dir, model_path)) # Get the weights from this model and create a copy of the weights in mlp_weights (to be copied over) MLP2 = mpNet.mlp MLP2.cuda() mlp_weights = MLP2.state_dict() # Save a copy of the encoder's state_dict() for loading into the annotated encoder later on encoder_to_copy = mpNet.encoder encoder_to_copy.cuda() #encoder_to_copy.cuda() torch.save(encoder_to_copy.state_dict(), 'acrobot_encoder_save.pkl') # do everything for the MLP on the GPU device = torch.device('cuda:%d' % (args.device)) encoder = Encoder_acrobot_Annotated( args.AE_input_size, args.mlp_input_size - args.total_input_size) encoder.cuda() #encoder.cuda() # Create the annotated model MLP = MLP_acrobot_Annotated(args.mlp_input_size, args.output_size) MLP.cuda() # Create the python model with the new layer names MLP_to_copy = MLP_acrobot(args.mlp_input_size, args.output_size) MLP_to_copy.cuda() # Copy over the mlp_weights into the Python model with the new layer names MLP_to_copy = copyMLP(MLP_to_copy, mlp_weights) print("Saving models...") # Load the encoder weights onto the gpu and then save the Annotated model encoder.load_state_dict( torch.load('acrobot_encoder_save.pkl', map_location=device)) encoder.save("acrobot_encoder_annotated_test_cpu.pt") # Save the Python model with the weights copied over and the new layer names in a temp file torch.save(MLP_to_copy.state_dict(), 'acrobot_mlp_no_dropout.pkl') # Because the layer names now match, can immediately load this state_dict() into the annotated model and then save it #MLP.load_state_dict(torch.load('mlp_no_dropout.pkl', map_location=device)) MLP.load_state_dict( torch.load('acrobot_mlp_no_dropout.pkl', map_location=device)) MLP.save("acrobot_mlp_annotated_test_gpu.pt") # Everything from here below just tests both models to see if the outputs match #obs, waypoint_dataset, waypoint_targets, env_indices, \ #_, _, _, _ = data_loader.load_train_dataset(N=1, NP=1, # data_folder=args.data_path, obs_f=True, # direction=1, # dynamics=dynamics, enforce_bounds=enforce_bounds, # system=system, step_sz=step_sz, num_steps=args.num_steps) # write test case #obs_test = np.array([0.1,1.2,3.0,2.5,1.4,5.2,3.4,-1.]) #obs_test = obs_test.reshape((1,2,2,2)) #np.savetxt('obs_voxel_test.txt', obs_test, delimiter='\n', fmt='%f') # write obstacle to flattened vector representation, then later be loaded in the C++ #obs_out = obs.flatten() #np.savetxt('obs_voxel.txt', obs_out, delimiter='\n', fmt='%f') obs = np.random.rand(1, 1, 32, 32) obs = torch.from_numpy(obs).type(torch.FloatTensor) obs = Variable(obs).cuda() # h = mpNet.encoder(obs) h = encoder(obs) path_data = np.array([ -0.08007369, 0.32780212, -0.01338363, 0.00726194, 0.00430644, -0.00323558, 0.18593094, 0.13094018 ]) path_data = np.array([path_data]) path_data = torch.from_numpy(path_data).type(torch.FloatTensor) test_input = torch.cat((path_data, h.data.cpu()), dim=1).cuda() # for MPNet1.0 test_input = Variable(test_input) print(test_input.size()) for i in range(5): test_output = mpNet.mlp(test_input) test_output_save = MLP(test_input) print("output %d: " % i) print(test_output.data) print(test_output_save.data)
def main(args): #global hl if torch.cuda.is_available(): torch.cuda.set_device(args.device) # environment setting cae = cae_identity mlp = MLP cpp_propagator = _sst_module.SystemPropagator() if args.env_type == 'pendulum': normalize = pendulum.normalize unnormalize = pendulum.unnormalize system = standard_cpp_systems.PSOPTPendulum() dynamics = None enforce_bounds = None step_sz = 0.002 num_steps = 20 elif args.env_type == 'cartpole': normalize = cart_pole.normalize unnormalize = cart_pole.unnormalize dynamics = cartpole.dynamics system = _sst_module.CartPole() enforce_bounds = cartpole.enforce_bounds step_sz = 0.002 num_steps = 20 elif args.env_type == 'cartpole_obs': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.CartPole() dynamics = cartpole.dynamics enforce_bounds = cartpole.enforce_bounds step_sz = 0.002 num_steps = 20 elif args.env_type == 'acrobot_obs': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP cae = CAE_acrobot_voxel_2d #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_2': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP2 cae = CAE_acrobot_voxel_2d_2 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_3': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP3 cae = CAE_acrobot_voxel_2d_2 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_4': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP3 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_5': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_6': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP4 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_7': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP5 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_8': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP6 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 mpnet = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size, cae, mlp) # load net # load previously trained model if start epoch > 0 model_dir = args.model_dir model_dir = model_dir + 'cost_' + args.env_type + "_lr%f_%s_step_%d/" % ( args.learning_rate, args.opt, args.num_steps) if not os.path.exists(model_dir): os.makedirs(model_dir) model_path = 'cost_kmpnet_epoch_%d_direction_%d_step_%d.pkl' % ( args.start_epoch, args.direction, args.num_steps) torch_seed, np_seed, py_seed = 0, 0, 0 if args.start_epoch > 0: #load_net_state(mpnet, os.path.join(args.model_path, model_path)) load_net_state(mpnet, os.path.join(model_dir, model_path)) #torch_seed, np_seed, py_seed = load_seed(os.path.join(args.model_path, model_path)) torch_seed, np_seed, py_seed = load_seed( os.path.join(model_dir, model_path)) # set seed after loading torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) if torch.cuda.is_available(): mpnet.cuda() mpnet.mlp.cuda() mpnet.encoder.cuda() if args.opt == 'Adagrad': mpnet.set_opt(torch.optim.Adagrad, lr=args.learning_rate) elif args.opt == 'Adam': mpnet.set_opt(torch.optim.Adam, lr=args.learning_rate) elif args.opt == 'SGD': mpnet.set_opt(torch.optim.SGD, lr=args.learning_rate, momentum=0.9) elif args.opt == 'ASGD': mpnet.set_opt(torch.optim.ASGD, lr=args.learning_rate) if args.start_epoch > 0: #load_opt_state(mpnet, os.path.join(args.model_path, model_path)) load_opt_state(mpnet, os.path.join(model_dir, model_path)) mpnet.eval() # load train and test data print('loading...') obs, cost_dataset, cost_targets, env_indices, \ _, _, _, _ = data_loader.load_train_dataset_cost(N=args.no_env, NP=args.no_motion_paths, data_folder=args.path_folder, obs_f=True, direction=args.direction, dynamics=dynamics, enforce_bounds=enforce_bounds, system=system, step_sz=step_sz, num_steps=args.num_steps) # randomize the dataset before training data = list(zip(cost_dataset, cost_targets, env_indices)) random.shuffle(data) dataset, targets, env_indices = list(zip(*data)) dataset = list(dataset) targets = list(targets) env_indices = list(env_indices) dataset = np.array(dataset) targets = np.array(targets) env_indices = np.array(env_indices) val_i = 0 for i in range(0, len(dataset), args.batch_size): # validation # calculate the corresponding batch in val_dataset dataset_i = dataset[i:i + args.batch_size] targets_i = targets[i:i + args.batch_size] env_indices_i = env_indices[i:i + args.batch_size] # record bi = dataset_i.astype(np.float32) print('bi shape:') print(bi.shape) bt = targets_i bi = torch.FloatTensor(bi) bt = torch.FloatTensor(bt) bi = normalize(bi, args.world_size) bi = to_var(bi) bt = to_var(bt) if obs is None: bobs = None else: bobs = obs[env_indices_i].astype(np.float32) bobs = torch.FloatTensor(bobs) bobs = to_var(bobs) print('cost network output: ') print(mpnet(bi, bobs).cpu().data) print('target: ') print(bt.cpu().data)
def main(args): # set seed print(args.model_path) torch_seed = np.random.randint(low=0, high=1000) np_seed = np.random.randint(low=0, high=1000) py_seed = np.random.randint(low=0, high=1000) torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) # Build the models if torch.cuda.is_available(): torch.cuda.set_device(args.device) # setup evaluation function and load function if args.env_type == 'pendulum': IsInCollision = pendulum.IsInCollision normalize = pendulum.normalize unnormalize = pendulum.unnormalize obs_file = None obc_file = None cae = cae_identity mlp = MLP system = standard_cpp_systems.PSOPTPendulum() bvp_solver = _sst_module.PSOPTBVPWrapper(system, 2, 1, 0) max_iter = 100 min_time_steps = 10 max_time_steps = 200 integration_step = 0.002 goal_radius = 0.1 random_seed = 0 sst_delta_near = 0.05 sst_delta_drain = 0.02 vel_idx = [1] mpNet = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size, cae, mlp) # load previously trained model if start epoch > 0 model_path = 'kmpnet_epoch_%d.pkl' % (args.start_epoch) if args.start_epoch > 0: load_net_state(mpNet, os.path.join(args.model_path, model_path)) torch_seed, np_seed, py_seed = load_seed( os.path.join(args.model_path, model_path)) # set seed after loading torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) if torch.cuda.is_available(): mpNet.cuda() mpNet.mlp.cuda() mpNet.encoder.cuda() if args.opt == 'Adagrad': mpNet.set_opt(torch.optim.Adagrad, lr=args.learning_rate) elif args.opt == 'Adam': mpNet.set_opt(torch.optim.Adam, lr=args.learning_rate) elif args.opt == 'SGD': mpNet.set_opt(torch.optim.SGD, lr=args.learning_rate, momentum=0.9) if args.start_epoch > 0: load_opt_state(mpNet, os.path.join(args.model_path, model_path)) # load train and test data print('loading...') if args.seen_N > 0: seen_test_data = data_loader.load_test_dataset( N=args.seen_N, NP=args.seen_NP, s=args.seen_s, sp=args.seen_sp, p_folder=args.path_folder, obs_f=obs_file, obc_f=obc_file) if args.unseen_N > 0: unseen_test_data = data_loader.load_test_dataset( N=args.unseen_N, NP=args.unseen_NP, s=args.unseen_s, sp=args.unseen_sp, p_folder=args.path_folder, obs_f=obs_file, obc_f=obc_file) # test # testing print('testing...') seen_test_suc_rate = 0. unseen_test_suc_rate = 0. T = 1 obc, obs, paths, path_lengths = seen_test_data if obs is not None: obs = obs.astype(np.float32) obs = torch.from_numpy(obs) fes_env = [] # list of list valid_env = [] time_env = [] time_total = [] normalize_func = lambda x: normalize(x, args.world_size) unnormalize_func = lambda x: unnormalize(x, args.world_size) for i in range(len(paths)): time_path = [] fes_path = [] # 1 for feasible, 0 for not feasible valid_path = [] # if the feasibility is valid or not # save paths to different files, indicated by i # feasible paths for each env suc_n = 0 for j in range(len(paths[0])): plt.ion() fig = plt.figure() ax = fig.add_subplot(111) ax.set_autoscale_on(True) hl, = ax.plot([], [], 'black') hl_real, = ax.plot([], [], 'yellow') time0 = time.time() time_norm = 0. fp = 0 # indicator for feasibility print("step: i=" + str(i) + " j=" + str(j)) p1_ind = 0 p2_ind = 0 p_ind = 0 if path_lengths[i][j] == 0: # invalid, feasible = 0, and path count = 0 fp = 0 valid_path.append(0) if path_lengths[i][j] > 0: fp = 0 valid_path.append(1) path = [paths[i][j][0], paths[i][j][path_lengths[i][j] - 1]] start = paths[i][j][0] end = paths[i][j][path_lengths[i][j] - 1] #start[1] = 0. #end[1] = 0. # plot the entire path #plt.plot(paths[i][j][:,0], paths[i][j][:,1]) control = [] time_step = [] MAX_NEURAL_REPLAN = 11 if obs is None: obs_i = None obc_i = None else: obs_i = obs[i] obc_i = obc[i] for k in range(path_lengths[i][j]): update_line(hl, ax, fig, paths[i][j][k]) print('created RRT') # Run planning and print out solution is some statistics every few iterations. time0 = time.time() start = paths[i][j][0] #end = paths[i][j][path_lengths[i][j]-1] new_sample = start print(new_sample) ax.scatter(new_sample[0], new_sample[1], c='r') ax.scatter(end[0], end[1], c='g') for iteration in range(max_iter): clear_line(hl_real, ax, fig) #hl_real, = ax.plot([], [], 'yellow') ip1 = np.concatenate([new_sample, end]) np.expand_dims(ip1, 0) #ip1=torch.cat((obs,start,goal)).unsqueeze(0) time0 = time.time() ip1 = normalize_func(ip1) ip1 = torch.FloatTensor(ip1) time_norm += time.time() - time0 ip1 = to_var(ip1) if obs is not None: obs = torch.FloatTensor(obs).unsqueeze(0) obs = to_var(obs) sample = mpNet(ip1, obs).squeeze(0) # unnormalize to world size sample = sample.data.cpu().numpy() time0 = time.time() sample = unnormalize_func(sample) ax.scatter(sample[0], sample[1], c='b') plt.pause(0.01) steer, steer_state, steer_control, steer_time_step = plan_general.steerTo( bvp_solver, start, sample, None, None, step_sz=0.02) for k in range(len(steer_state)): update_line(hl_real, ax, fig, steer_state[k]) plt.waitforbuttonpress()
def main(args): # load MPNet #global hl if torch.cuda.is_available(): torch.cuda.set_device(args.device) if args.debug: from sparse_rrt import _sst_module from plan_utility import cart_pole, cart_pole_obs, pendulum, acrobot_obs from tools import data_loader cpp_propagator = _sst_module.SystemPropagator() if args.env_type == 'pendulum': if args.debug: normalize = pendulum.normalize unnormalize = pendulum.unnormalize system = standard_cpp_systems.PSOPTPendulum() dynamics = None enforce_bounds = None step_sz = 0.002 num_steps = 20 elif args.env_type == 'cartpole': if args.debug: normalize = cart_pole.normalize unnormalize = cart_pole.unnormalize dynamics = cartpole.dynamics system = _sst_module.CartPole() enforce_bounds = cartpole.enforce_bounds step_sz = 0.002 num_steps = 20 elif args.env_type == 'cartpole_obs': if args.debug: normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.CartPole() dynamics = cartpole.dynamics enforce_bounds = cartpole.enforce_bounds step_sz = 0.002 num_steps = 20 elif args.env_type == 'acrobot_obs': if args.debug: normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate( system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 mlp = mlp_acrobot.MLP cae = CAE_acrobot_voxel_2d elif args.env_type == 'acrobot_obs_8': if args.debug: normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate( system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 mlp = mlp_acrobot.MLP6 cae = CAE_acrobot_voxel_2d_3 mpnet = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size, cae, mlp) # load net # load previously trained model if start epoch > 0 model_dir = args.model_dir model_dir = model_dir + 'cost_' + args.env_type + "_lr%f_%s_step_%d/" % ( args.learning_rate, args.opt, args.num_steps) if not os.path.exists(model_dir): os.makedirs(model_dir) model_path = 'cost_kmpnet_epoch_%d_direction_%d_step_%d.pkl' % ( args.start_epoch, args.direction, args.num_steps) torch_seed, np_seed, py_seed = 0, 0, 0 if args.start_epoch > 0: #load_net_state(mpnet, os.path.join(args.model_path, model_path)) load_net_state(mpnet, os.path.join(model_dir, model_path)) #torch_seed, np_seed, py_seed = load_seed(os.path.join(args.model_path, model_path)) torch_seed, np_seed, py_seed = load_seed( os.path.join(model_dir, model_path)) # set seed after loading torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) if torch.cuda.is_available(): mpnet.cuda() mpnet.mlp.cuda() mpnet.encoder.cuda() if args.opt == 'Adagrad': mpnet.set_opt(torch.optim.Adagrad, lr=args.learning_rate) elif args.opt == 'Adam': mpnet.set_opt(torch.optim.Adam, lr=args.learning_rate) elif args.opt == 'SGD': mpnet.set_opt(torch.optim.SGD, lr=args.learning_rate, momentum=0.9) elif args.opt == 'ASGD': mpnet.set_opt(torch.optim.ASGD, lr=args.learning_rate) if args.start_epoch > 0: #load_opt_state(mpnet, os.path.join(args.model_path, model_path)) load_opt_state(mpnet, os.path.join(model_dir, model_path)) # load train and test data print('loading...') if args.debug: obs, cost_dataset, cost_targets, env_indices, \ _, _, _, _ = data_loader.load_train_dataset_cost(N=args.no_env, NP=args.no_motion_paths, data_folder=args.path_folder, obs_f=True, direction=args.direction, dynamics=dynamics, enforce_bounds=enforce_bounds, system=system, step_sz=step_sz, num_steps=args.num_steps) # randomize the dataset before training data = list(zip(cost_dataset, cost_targets, env_indices)) random.shuffle(data) dataset, targets, env_indices = list(zip(*data)) dataset = list(dataset) targets = list(targets) env_indices = list(env_indices) dataset = np.array(dataset) targets = np.array(targets) env_indices = np.array(env_indices) # record bi = dataset.astype(np.float32) print('bi shape:') print(bi.shape) bt = targets bi = torch.FloatTensor(bi) bt = torch.FloatTensor(bt) bi = normalize(bi, args.world_size) bi = to_var(bi) bt = to_var(bt) if obs is None: bobs = None else: bobs = obs[env_indices].astype(np.float32) bobs = torch.FloatTensor(bobs) bobs = to_var(bobs) else: bobs = np.random.rand(1, 1, args.AE_input_size, args.AE_input_size) bobs = torch.from_numpy(bobs).type(torch.FloatTensor) bobs = to_var(bobs) bi = np.random.rand(1, args.total_input_size) bt = np.random.rand(1, args.output_size) bi = torch.from_numpy(bi).type(torch.FloatTensor) bt = torch.from_numpy(bt).type(torch.FloatTensor) bi = to_var(bi) bt = to_var(bt) # set to training model to enable dropout #mpnet.train() mpnet.eval() MLP = mpnet.mlp encoder = mpnet.encoder traced_encoder = torch.jit.trace(encoder, (bobs)) encoder_output = encoder(bobs) mlp_input = torch.cat((encoder_output, bi), 1) traced_MLP = torch.jit.trace(MLP, (mlp_input)) traced_encoder.save("costnet_%s_encoder_epoch_%d_step_%d.pt" % (args.env_type, args.start_epoch, args.num_steps)) traced_MLP.save("costnet_%s_MLP_epoch_%d_step_%d.pt" % (args.env_type, args.start_epoch, args.num_steps)) # test the traced model serilized_encoder = torch.jit.script(encoder) serilized_MLP = torch.jit.script(MLP) serilized_encoder_output = serilized_encoder(bobs) serilized_MLP_input = torch.cat((serilized_encoder_output, bi), 1) serilized_MLP_output = serilized_MLP(serilized_MLP_input) print('encoder output: ', serilized_encoder_output) print('MLP output: ', serilized_MLP_output) print('data: ', bt)
def main(args): #global hl if torch.cuda.is_available(): torch.cuda.set_device(args.device) # environment setting cae = cae_identity mlp = MLP cpp_propagator = _sst_module.SystemPropagator() if args.env_type == 'pendulum': normalize = pendulum.normalize unnormalize = pendulum.unnormalize system = standard_cpp_systems.PSOPTPendulum() dynamics = None enforce_bounds = None step_sz = 0.002 num_steps = 20 elif args.env_type == 'cartpole': normalize = cart_pole.normalize unnormalize = cart_pole.unnormalize dynamics = cartpole.dynamics system = _sst_module.CartPole() enforce_bounds = cartpole.enforce_bounds step_sz = 0.002 num_steps = 20 elif args.env_type == 'cartpole_obs': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP cae = CAE_cartpole_voxel_2d dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 20 pos_indices = [0, 2] vel_indices = [1, 3] elif args.env_type == 'cartpole_obs_2': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP2 cae = CAE_cartpole_voxel_2d dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 20 pos_indices = [0, 2] vel_indices = [1, 3] elif args.env_type == 'cartpole_obs_3': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP4 cae = CAE_cartpole_voxel_2d dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 20 pos_indices = [0, 2] vel_indices = [1, 3] elif args.env_type == 'cartpole_obs_4_small': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP3 cae = CAE_cartpole_voxel_2d # dynamics: None -- without integration to dense trajectory dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) #dynamics = None enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 20 pos_indices = np.array([0, 2]) vel_indices = np.array([1, 3]) elif args.env_type == 'cartpole_obs_4_big': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP3 cae = CAE_cartpole_voxel_2d # dynamics: None -- without integration to dense trajectory dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) #dynamics = None enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 20 pos_indices = np.array([0, 2]) vel_indices = np.array([1, 3]) elif args.env_type == 'cartpole_obs_4_small_x_theta': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP3 cae = CAE_cartpole_voxel_2d # dynamics: None -- without integration to dense trajectory dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) #dynamics = None enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 20 pos_indices = np.array([0, 1]) vel_indices = np.array([2, 3]) elif args.env_type == 'cartpole_obs_4_big_x_theta': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP3 cae = CAE_cartpole_voxel_2d # dynamics: None -- without integration to dense trajectory dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) #dynamics = None enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 20 pos_indices = np.array([0, 1]) vel_indices = np.array([2, 3]) elif args.env_type == 'cartpole_obs_4_small_decouple_output': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP3 cae = CAE_cartpole_voxel_2d # dynamics: None -- without integration to dense trajectory dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) #dynamics = None enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 20 pos_indices = np.array([0, 2]) vel_indices = np.array([1, 3]) elif args.env_type == 'cartpole_obs_4_big_decouple_output': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP3 cae = CAE_cartpole_voxel_2d # dynamics: None -- without integration to dense trajectory dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) #dynamics = None enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 20 pos_indices = np.array([0, 2]) vel_indices = np.array([1, 3]) elif args.env_type == 'acrobot_obs': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP cae = CAE_acrobot_voxel_2d #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 pos_indices = [0, 1] vel_indices = [2, 3] elif args.env_type == 'acrobot_obs_2': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP2 cae = CAE_acrobot_voxel_2d_2 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 pos_indices = [0, 1] vel_indices = [2, 3] elif args.env_type == 'acrobot_obs_3': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP3 cae = CAE_acrobot_voxel_2d_2 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 pos_indices = [0, 1] vel_indices = [2, 3] elif args.env_type == 'acrobot_obs_4': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP3 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 pos_indices = [0, 1] vel_indices = [2, 3] elif args.env_type == 'acrobot_obs_5': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 pos_indices = [0, 1] vel_indices = [2, 3] elif args.env_type == 'acrobot_obs_6': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP4 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 pos_indices = [0, 1] vel_indices = [2, 3] elif args.env_type == 'acrobot_obs_7': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP5 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_8': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP6 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 # set loss for mpnet if args.loss == 'mse': #mpnet.loss_f = nn.MSELoss() def mse_loss(y1, y2): l = (y1 - y2) ** 2 l = torch.mean(l, dim=0) # sum alone the batch dimension, now the dimension is the same as input dimension return l loss_f_p = mse_loss loss_f_v = mse_loss elif args.loss == 'l1_smooth': #mpnet.loss_f = nn.SmoothL1Loss() def l1_smooth_loss(y1, y2): l1 = torch.abs(y1 - y2) cond = l1 < 1 l = torch.where(cond, 0.5 * l1 ** 2, l1) l = torch.mean(l, dim=0) # sum alone the batch dimension, now the dimension is the same as input dimension return l loss_f_p = l1_smooth_loss loss_f_v = l1_smooth_loss elif args.loss == 'mse_decoupled': def mse_decoupled(y1, y2): # for angle terms, wrap it to -pi~pi l_0 = torch.abs(y1[:,0] - y2[:,0]) ** 2 l_1 = torch.abs(y1[:,1] - y2[:,1]) ** 2 l_2 = torch.abs(y1[:,2] - y2[:,2]) # angular dimension l_3 = torch.abs(y1[:,3] - y2[:,3]) ** 2 cond = (l_2 > 1.0) * (l_2 <= 2.0) l_2 = torch.where(cond, 2*1.0-l_2, l_2) l_2 = l_2 ** 2 l_0 = torch.mean(l_0) l_1 = torch.mean(l_1) l_2 = torch.mean(l_2) l_3 = torch.mean(l_3) return torch.stack([l_0, l_1, l_2, l_3]) loss_f_p = mse_decoupled loss_f_v = mse_decoupled elif args.loss == 'l1_smooth_decoupled': # this only is for cartpole, need to adapt to other systems #TODO def l1_smooth_decoupled(y1, y2): # for angle terms, wrap it to -pi~pi l_0 = torch.abs(y1[:,0] - y2[:,0]) l_1 = torch.abs(y1[:,1] - y2[:,1]) # angular dimension cond = (l_1 > 1.0) * (l_1 <= 2.0) l_1 = torch.where(cond, 2*1.0-l_1, l_1) # then change to l1_smooth_loss cond = l_0 < 1 l_0 = torch.where(cond, 0.5 * l_0 ** 2, l_0) cond = l_1 < 1 l_1 = torch.where(cond, 0.5 * l_1 ** 2, l_1) l_0 = torch.mean(l_0) l_1 = torch.mean(l_1) return torch.stack([l_0, l_1]) def l1_smooth_loss(y1, y2): l1 = torch.abs(y1 - y2) cond = l1 < 1 l = torch.where(cond, 0.5 * l1 ** 2, l1) l = torch.mean(l, dim=0) # sum alone the batch dimension, now the dimension is the same as input dimension return l loss_f_p = l1_smooth_decoupled loss_f_v = l1_smooth_loss if 'decouple_output' in args.env_type: print('mpnet using decoupled output') mpnet_pnet = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size//2, cae, mlp, loss_f_p) mpnet_vnet = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size//2, cae, mlp, loss_f_v) else: mpnet_pnet = KMPNet(args.total_input_size//2, args.AE_input_size, args.mlp_input_size, args.output_size//2, cae, mlp, loss_f_p) mpnet_vnet = KMPNet(args.total_input_size//2, args.AE_input_size, args.mlp_input_size, args.output_size//2, cae, mlp, loss_f_v) # load net # load previously trained model if start epoch > 0 model_dir = args.model_dir if args.loss == 'mse': if args.multigoal == 0: model_dir = model_dir+args.env_type+"_lr%f_%s_step_%d/" % (args.learning_rate, args.opt, args.num_steps) else: model_dir = model_dir+args.env_type+"_lr%f_%s_step_%d_multigoal/" % (args.learning_rate, args.opt, args.num_steps) else: if args.multigoal == 0: model_dir = model_dir+args.env_type+"_lr%f_%s_loss_%s_step_%d/" % (args.learning_rate, args.opt, args.loss, args.num_steps) else: model_dir = model_dir+args.env_type+"_lr%f_%s_loss_%s_step_%d_multigoal/" % (args.learning_rate, args.opt, args.loss, args.num_steps) if not os.path.exists(model_dir): os.makedirs(model_dir) model_pnet_path='kmpnet_pnet_epoch_%d_direction_%d_step_%d.pkl' %(args.start_epoch, args.direction, args.num_steps) model_vnet_path='kmpnet_vnet_epoch_%d_direction_%d_step_%d.pkl' %(args.start_epoch, args.direction, args.num_steps) torch_seed, np_seed, py_seed = 0, 0, 0 if args.start_epoch > 0: #load_net_state(mpnet, os.path.join(args.model_path, model_path)) load_net_state(mpnet_pnet, os.path.join(model_dir, model_pnet_path)) load_net_state(mpnet_vnet, os.path.join(model_dir, model_vnet_path)) #torch_seed, np_seed, py_seed = load_seed(os.path.join(args.model_path, model_path)) torch_seed, np_seed, py_seed = load_seed(os.path.join(model_dir, model_pnet_path)) # set seed after loading torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) if torch.cuda.is_available(): mpnet_pnet.cuda() mpnet_pnet.mlp.cuda() mpnet_pnet.encoder.cuda() mpnet_vnet.cuda() mpnet_vnet.mlp.cuda() mpnet_vnet.encoder.cuda() if args.opt == 'Adagrad': mpnet_pnet.set_opt(torch.optim.Adagrad, lr=args.learning_rate) elif args.opt == 'Adam': mpnet_pnet.set_opt(torch.optim.Adam, lr=args.learning_rate) elif args.opt == 'SGD': mpnet_pnet.set_opt(torch.optim.SGD, lr=args.learning_rate, momentum=0.9) elif args.opt == 'ASGD': mpnet_pnet.set_opt(torch.optim.ASGD, lr=args.learning_rate) if args.opt == 'Adagrad': mpnet_vnet.set_opt(torch.optim.Adagrad, lr=args.learning_rate) elif args.opt == 'Adam': mpnet_vnet.set_opt(torch.optim.Adam, lr=args.learning_rate) elif args.opt == 'SGD': mpnet_vnet.set_opt(torch.optim.SGD, lr=args.learning_rate, momentum=0.9) elif args.opt == 'ASGD': mpnet_vnet.set_opt(torch.optim.ASGD, lr=args.learning_rate) if args.start_epoch > 0: #load_opt_state(mpnet, os.path.join(args.model_path, model_path)) load_opt_state(mpnet_pnet, os.path.join(model_dir, model_path)) load_opt_state(mpnet_vnet, os.path.join(model_dir, model_path)) # load train and test data print('loading...') obs, waypoint_dataset, waypoint_targets, env_indices, \ _, _, _, _ = data_loader.load_train_dataset(N=args.no_env, NP=args.no_motion_paths, data_folder=args.path_folder, obs_f=True, direction=args.direction, dynamics=dynamics, enforce_bounds=enforce_bounds, system=system, step_sz=step_sz, num_steps=args.num_steps, multigoal=args.multigoal) # randomize the dataset before training data=list(zip(waypoint_dataset,waypoint_targets,env_indices)) random.shuffle(data) dataset,targets,env_indices=list(zip(*data)) dataset = list(dataset) dataset = np.array(dataset) targets = np.array(targets) print(np.concatenate([pos_indices, pos_indices+args.total_input_size//2])) p_dataset = dataset[:, np.concatenate([pos_indices, pos_indices+args.total_input_size//2])] v_dataset = dataset[:, np.concatenate([vel_indices, vel_indices+args.total_input_size//2])] if 'decouple_output' in args.env_type: # only decouple output print('only decouple output but not input') p_dataset = dataset v_dataset = dataset print(p_dataset.shape) print(v_dataset.shape) p_targets = targets[:,pos_indices] v_targets = targets[:,vel_indices] # this is only for cartpole # TODO: add string for choosing env p_targets = list(p_targets) v_targets = list(v_targets) #targets = list(targets) env_indices = list(env_indices) dataset = np.array(dataset) #targets = np.array(targets) env_indices = np.array(env_indices) # use 5% as validation dataset val_len = int(len(dataset) * 0.05) val_p_dataset = p_dataset[-val_len:] val_v_dataset = v_dataset[-val_len:] val_p_targets = p_targets[-val_len:] val_v_targets = v_targets[-val_len:] val_env_indices = env_indices[-val_len:] p_dataset = p_dataset[:-val_len] v_dataset = v_dataset[:-val_len] p_targets = p_targets[:-val_len] v_targets = v_targets[:-val_len] env_indices = env_indices[:-val_len] # Train the Models print('training...') if args.loss == 'mse': if args.multigoal == 0: writer_fname = 'pos_vel_%s_%f_%s_direction_%d_step_%d' % (args.env_type, args.learning_rate, args.opt, args.direction, args.num_steps, ) else: writer_fname = 'pos_vel_%s_%f_%s_direction_%d_step_%d_multigoal' % (args.env_type, args.learning_rate, args.opt, args.direction, args.num_steps, ) else: if args.multigoal == 0: writer_fname = 'pos_vel_%s_%f_%s_direction_%d_step_%d_loss_%s' % (args.env_type, args.learning_rate, args.opt, args.direction, args.num_steps, args.loss, ) else: writer_fname = 'pos_vel_%s_%f_%s_direction_%d_step_%d_loss_%s_multigoal' % (args.env_type, args.learning_rate, args.opt, args.direction, args.num_steps, args.loss, ) writer = SummaryWriter('./runs/'+writer_fname) record_i = 0 val_record_i = 0 p_loss_avg_i = 0 p_val_loss_avg_i = 0 p_loss_avg = 0. p_val_loss_avg = 0. v_loss_avg_i = 0 v_val_loss_avg_i = 0 v_loss_avg = 0. v_val_loss_avg = 0. loss_steps = 100 # record every 100 loss world_size = np.array(args.world_size) pos_world_size = list(world_size[pos_indices]) vel_world_size = list(world_size[vel_indices]) for epoch in range(args.start_epoch+1,args.num_epochs+1): print('epoch' + str(epoch)) val_i = 0 for i in range(0,len(p_dataset),args.batch_size): print('epoch: %d, training... path: %d' % (epoch, i+1)) p_dataset_i = p_dataset[i:i+args.batch_size] v_dataset_i = v_dataset[i:i+args.batch_size] p_targets_i = p_targets[i:i+args.batch_size] v_targets_i = v_targets[i:i+args.batch_size] env_indices_i = env_indices[i:i+args.batch_size] # record p_bi = p_dataset_i.astype(np.float32) v_bi = v_dataset_i.astype(np.float32) print('p_bi shape:') print(p_bi.shape) print('v_bi shape:') print(v_bi.shape) p_bt = p_targets_i v_bt = v_targets_i p_bi = torch.FloatTensor(p_bi) v_bi = torch.FloatTensor(v_bi) p_bt = torch.FloatTensor(p_bt) v_bt = torch.FloatTensor(v_bt) # edit: disable this for investigation of the good weights for training, and for wrapping if 'decouple_output' in args.env_type: print('using normalizatino of decoupled output') # only decouple output but not input p_bi, v_bi, p_bt, v_bt = normalize(p_bi, args.world_size), normalize(v_bi, args.world_size), normalize(p_bt, pos_world_size), normalize(v_bt, vel_world_size) else: p_bi, v_bi, p_bt, v_bt = normalize(p_bi, pos_world_size), normalize(v_bi, vel_world_size), normalize(p_bt, pos_world_size), normalize(v_bt, vel_world_size) mpnet_pnet.zero_grad() mpnet_vnet.zero_grad() p_bi=to_var(p_bi) v_bi=to_var(v_bi) p_bt=to_var(p_bt) v_bt=to_var(v_bt) if obs is None: bobs = None else: bobs = obs[env_indices_i].astype(np.float32) bobs = torch.FloatTensor(bobs) bobs = to_var(bobs) print('-------pnet-------') print('before training losses:') print(mpnet_pnet.loss(mpnet_pnet(p_bi, bobs), p_bt)) mpnet_pnet.step(p_bi, bobs, p_bt) print('after training losses:') print(mpnet_pnet.loss(mpnet_pnet(p_bi, bobs), p_bt)) p_loss = mpnet_pnet.loss(mpnet_pnet(p_bi, bobs), p_bt) #update_line(hl, ax, [i//args.batch_size, loss.data.numpy()]) p_loss_avg += p_loss.cpu().data p_loss_avg_i += 1 print('-------vnet-------') print('before training losses:') print(mpnet_vnet.loss(mpnet_vnet(v_bi, bobs), v_bt)) mpnet_vnet.step(v_bi, bobs, v_bt) print('after training losses:') print(mpnet_vnet.loss(mpnet_vnet(v_bi, bobs), v_bt)) v_loss = mpnet_vnet.loss(mpnet_vnet(v_bi, bobs), v_bt) #update_line(hl, ax, [i//args.batch_size, loss.data.numpy()]) v_loss_avg += v_loss.cpu().data v_loss_avg_i += 1 if p_loss_avg_i >= loss_steps: p_loss_avg = p_loss_avg / p_loss_avg_i writer.add_scalar('p_train_loss_0', p_loss_avg[0], record_i) writer.add_scalar('p_train_loss_1', p_loss_avg[1], record_i) v_loss_avg = v_loss_avg / v_loss_avg_i writer.add_scalar('v_train_loss_0', v_loss_avg[0], record_i) writer.add_scalar('v_train_loss_1', v_loss_avg[1], record_i) record_i += 1 p_loss_avg = 0. p_loss_avg_i = 0 v_loss_avg = 0. v_loss_avg_i = 0 # validation # calculate the corresponding batch in val_dataset p_dataset_i = val_p_dataset[val_i:val_i+args.batch_size] v_dataset_i = val_v_dataset[val_i:val_i+args.batch_size] p_targets_i = val_p_targets[val_i:val_i+args.batch_size] v_targets_i = val_v_targets[val_i:val_i+args.batch_size] env_indices_i = val_env_indices[val_i:val_i+args.batch_size] val_i = val_i + args.batch_size if val_i > val_len: val_i = 0 # record p_bi = p_dataset_i.astype(np.float32) v_bi = v_dataset_i.astype(np.float32) print('p_bi shape:') print(p_bi.shape) print('v_bi shape:') print(v_bi.shape) p_bt = p_targets_i v_bt = v_targets_i p_bi = torch.FloatTensor(p_bi) v_bi = torch.FloatTensor(v_bi) p_bt = torch.FloatTensor(p_bt) v_bt = torch.FloatTensor(v_bt) if 'decouple_output' in args.env_type: # only decouple output but not input p_bi, v_bi, p_bt, v_bt = normalize(p_bi, args.world_size), normalize(v_bi, args.world_size), normalize(p_bt, pos_world_size), normalize(v_bt, vel_world_size) else: p_bi, v_bi, p_bt, v_bt = normalize(p_bi, pos_world_size), normalize(v_bi, vel_world_size), normalize(p_bt, pos_world_size), normalize(v_bt, vel_world_size) p_bi=to_var(p_bi) v_bi=to_var(v_bi) p_bt=to_var(p_bt) v_bt=to_var(v_bt) if obs is None: bobs = None else: bobs = obs[env_indices_i].astype(np.float32) bobs = torch.FloatTensor(bobs) bobs = to_var(bobs) print('-------pnet loss--------') p_loss = mpnet_pnet.loss(mpnet_pnet(p_bi, bobs), p_bt) print('validation loss: ' % (p_loss.cpu().data)) p_val_loss_avg += p_loss.cpu().data p_val_loss_avg_i += 1 print('-------vnet loss--------') v_loss = mpnet_vnet.loss(mpnet_vnet(v_bi, bobs), v_bt) print('validation loss: ' % (v_loss.cpu().data)) v_val_loss_avg += v_loss.cpu().data v_val_loss_avg_i += 1 if p_val_loss_avg_i >= loss_steps: p_val_loss_avg = p_val_loss_avg / p_val_loss_avg_i writer.add_scalar('p_val_loss_0', p_val_loss_avg[0], val_record_i) writer.add_scalar('p_val_loss_1', p_val_loss_avg[1], val_record_i) v_val_loss_avg = v_val_loss_avg / v_val_loss_avg_i writer.add_scalar('v_val_loss_0', v_val_loss_avg[0], val_record_i) writer.add_scalar('v_val_loss_1', v_val_loss_avg[1], val_record_i) val_record_i += 1 p_val_loss_avg = 0. p_val_loss_avg_i = 0 v_val_loss_avg = 0. v_val_loss_avg_i = 0 # Save the models if epoch > 0 and epoch % 50 == 0: model_pnet_path='kmpnet_pnet_epoch_%d_direction_%d_step_%d.pkl' %(epoch, args.direction, args.num_steps) model_vnet_path='kmpnet_vnet_epoch_%d_direction_%d_step_%d.pkl' %(epoch, args.direction, args.num_steps) #save_state(mpnet, torch_seed, np_seed, py_seed, os.path.join(args.model_path,model_path)) save_state(mpnet_pnet, torch_seed, np_seed, py_seed, os.path.join(model_dir,model_pnet_path)) save_state(mpnet_vnet, torch_seed, np_seed, py_seed, os.path.join(model_dir,model_vnet_path)) writer.export_scalars_to_json("./all_scalars.json") writer.close()
def main(args): # set seed print(args.model_path) torch_seed = np.random.randint(low=0, high=1000) np_seed = np.random.randint(low=0, high=1000) py_seed = np.random.randint(low=0, high=1000) torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) # Build the models if torch.cuda.is_available(): torch.cuda.set_device(args.device) # setup evaluation function and load function if args.env_type == 'pendulum': IsInCollision = pendulum.IsInCollision normalize = pendulum.normalize unnormalize = pendulum.unnormalize obs_file = None obc_file = None cae = cae_identity mlp = MLP system = standard_cpp_systems.PSOPTPendulum() bvp_solver = _sst_module.PSOPTBVPWrapper(system, 2, 1, 0) max_iter = 200 min_time_steps = 20 max_time_steps = 200 integration_step = 0.002 goal_radius = 0.1 random_seed = 0 sst_delta_near = 0.05 sst_delta_drain = 0.02 vel_idx = [1] mpNet = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size, cae, mlp) # load previously trained model if start epoch > 0 model_path = 'kmpnet_epoch_%d.pkl' % (args.start_epoch) if args.start_epoch > 0: load_net_state(mpNet, os.path.join(args.model_path, model_path)) torch_seed, np_seed, py_seed = load_seed( os.path.join(args.model_path, model_path)) # set seed after loading torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) if torch.cuda.is_available(): mpNet.cuda() mpNet.mlp.cuda() mpNet.encoder.cuda() if args.opt == 'Adagrad': mpNet.set_opt(torch.optim.Adagrad, lr=args.learning_rate) elif args.opt == 'Adam': mpNet.set_opt(torch.optim.Adam, lr=args.learning_rate) elif args.opt == 'SGD': mpNet.set_opt(torch.optim.SGD, lr=args.learning_rate, momentum=0.9) if args.start_epoch > 0: load_opt_state(mpNet, os.path.join(args.model_path, model_path)) # load train and test data print('loading...') if args.seen_N > 0: seen_test_data = data_loader.load_test_dataset( N=args.seen_N, NP=args.seen_NP, s=args.seen_s, sp=args.seen_sp, p_folder=args.path_folder, obs_f=obs_file, obc_f=obc_file) if args.unseen_N > 0: unseen_test_data = data_loader.load_test_dataset( N=args.unseen_N, NP=args.unseen_NP, s=args.unseen_s, sp=args.unseen_sp, p_folder=args.path_folder, obs_f=obs_file, obc_f=obc_file) # test # testing print('testing...') seen_test_suc_rate = 0. unseen_test_suc_rate = 0. T = 1 obc, obs, paths, path_lengths = seen_test_data if obs is not None: obs = obs.astype(np.float32) obs = torch.from_numpy(obs) fes_env = [] # list of list valid_env = [] time_env = [] time_total = [] normalize_func = lambda x: normalize(x, args.world_size) unnormalize_func = lambda x: unnormalize(x, args.world_size) low = [] high = [] state_bounds = system.get_state_bounds() for i in range(len(state_bounds)): low.append(state_bounds[i][0]) high.append(state_bounds[i][1]) for i in range(len(paths)): time_path = [] fes_path = [] # 1 for feasible, 0 for not feasible valid_path = [] # if the feasibility is valid or not # save paths to different files, indicated by i # feasible paths for each env suc_n = 0 sst_suc_n = 0 for j in range(len(paths[0])): time0 = time.time() time_norm = 0. fp = 0 # indicator for feasibility print("step: i=" + str(i) + " j=" + str(j)) p1_ind = 0 p2_ind = 0 p_ind = 0 if path_lengths[i][j] == 0: # invalid, feasible = 0, and path count = 0 fp = 0 valid_path.append(0) if path_lengths[i][j] > 0: fp = 0 valid_path.append(1) path = [paths[i][j][0], paths[i][j][path_lengths[i][j] - 1]] start = paths[i][j][0] end = paths[i][j][path_lengths[i][j] - 1] start[1] = 0. end[1] = 0. # plot the entire path #plt.plot(paths[i][j][:,0], paths[i][j][:,1]) """ planner = SST( state_bounds=system.get_state_bounds(), control_bounds=system.get_control_bounds(), distance=system.distance_computer(), start_state=start, goal_state=end, goal_radius=goal_radius, random_seed=0, sst_delta_near=sst_delta_near, sst_delta_drain=sst_delta_drain ) """ planner = RRT(state_bounds=system.get_state_bounds(), control_bounds=system.get_control_bounds(), distance=system.distance_computer(), start_state=start, goal_state=end, goal_radius=goal_radius, random_seed=0) control = [] time_step = [] MAX_NEURAL_REPLAN = 11 if obs is None: obs_i = None obc_i = None else: obs_i = obs[i] obc_i = obc[i] print('created RRT') # Run planning and print out solution is some statistics every few iterations. time0 = time.time() start = paths[i][j][0] #end = paths[i][j][path_lengths[i][j]-1] new_sample = start sample = start N_sample = 10 for iteration in range(max_iter // N_sample): #if iteration % 50 == 0: # # from time to time use the goal # sample = end # #planner.step_with_sample(system, sample, 20, 200, 0.002) #else: #planner.step(system, min_time_steps, max_time_steps, integration_step) #sample = np.random.uniform(low=low, high=high) for num_sample in range(N_sample): ip1 = np.concatenate([new_sample, end]) np.expand_dims(ip1, 0) #ip1=torch.cat((obs,start,goal)).unsqueeze(0) time0 = time.time() ip1 = normalize_func(ip1) ip1 = torch.FloatTensor(ip1) time_norm += time.time() - time0 ip1 = to_var(ip1) if obs is not None: obs = torch.FloatTensor(obs).unsqueeze(0) obs = to_var(obs) sample = mpNet(ip1, obs).squeeze(0) # unnormalize to world size sample = sample.data.cpu().numpy() time0 = time.time() sample = unnormalize_func(sample) print('sample:') print(sample) print('start:') print(start) print('goal:') print(end) print('accuracy: %f' % (float(suc_n) / (j + 1))) print('sst accuracy: %f' % (float(sst_suc_n) / (j + 1))) sample = planner.step_with_sample(system, sample, min_time_steps, max_time_steps, 0.002) #planner.step_bvp(system, 10, 200, 0.002) im = planner.visualize_nodes(system) show_image(im, 'nodes', wait=False) new_sample = planner.step_with_sample(system, end, min_time_steps, max_time_steps, 0.002) solution = planner.get_solution() if solution is not None: print('solved.') suc_n += 1 break planner = SST(state_bounds=system.get_state_bounds(), control_bounds=system.get_control_bounds(), distance=system.distance_computer(), start_state=start, goal_state=end, goal_radius=goal_radius, random_seed=0, sst_delta_near=sst_delta_near, sst_delta_drain=sst_delta_drain) # Run planning and print out solution is some statistics every few iterations. time0 = time.time() start = paths[i][j][0] #end = paths[i][j][path_lengths[i][j]-1] new_sample = start sample = start N_sample = 10 for iteration in range(max_iter // N_sample): for k in range(N_sample): sample = np.random.uniform(low=low, high=high) planner.step_with_sample(system, sample, min_time_steps, max_time_steps, integration_step) im = planner.visualize_tree(system) show_image(im, 'tree', wait=False) print('accuracy: %f' % (float(suc_n) / (j + 1))) print('sst accuracy: %f' % (float(sst_suc_n) / (j + 1))) planner.step_with_sample(system, end, min_time_steps, max_time_steps, integration_step) solution = planner.get_solution() if solution is not None: print('solved.') sst_suc_n += 1 break print('accuracy: %f' % (float(suc_n) / (j + 1))) print('sst accuracy: %f' % (float(sst_suc_n) / (j + 1)))
def main(args): #global hl if torch.cuda.is_available(): torch.cuda.set_device(args.device) # environment setting multigoal = False cpp_propagator = _sst_module.SystemPropagator() if args.env_type == 'pendulum': normalize = pendulum.normalize unnormalize = pendulum.unnormalize system = standard_cpp_systems.PSOPTPendulum() dynamics = None enforce_bounds = None step_sz = 0.002 num_steps = 20 elif args.env_type == 'cartpole': normalize = cart_pole.normalize unnormalize = cart_pole.unnormalize dynamics = cartpole.dynamics system = _sst_module.CartPole() enforce_bounds = cartpole.enforce_bounds step_sz = 0.002 num_steps = 20 elif args.env_type == 'cartpole_obs': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.CartPole() dynamics = cartpole.dynamics enforce_bounds = cartpole.enforce_bounds step_sz = 0.002 num_steps = 20 cae = cae_identity mlp = MLP elif args.env_type == 'cartpole_obs_4': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP3_no_dropout cae = CAE_cartpole_voxel_2d dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) multigoal = False enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 20 elif args.env_type == 'cartpole_obs_4_multigoal': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.PSOPTCartPole() mlp = mlp_cartpole.MLP3_no_dropout cae = CAE_cartpole_voxel_2d dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) #dynamics = None multigoal = True enforce_bounds = cart_pole_obs.enforce_bounds step_sz = 0.002 num_steps = 20 elif args.env_type == 'acrobot_obs': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP cae = CAE_acrobot_voxel_2d #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_2': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP2 cae = CAE_acrobot_voxel_2d_2 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_3': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP3 cae = CAE_acrobot_voxel_2d_2 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_4': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP3 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_5': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_6': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP4 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_7': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP5 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_8': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP6 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 # set loss for mpnet if args.loss == 'mse': #mpnet.loss_f = nn.MSELoss() def mse_loss(y1, y2): l = (y1 - y2)**2 l = torch.mean( l, dim=0 ) # sum alone the batch dimension, now the dimension is the same as input dimension return l loss_f = mse_loss elif args.loss == 'l1_smooth': #mpnet.loss_f = nn.SmoothL1Loss() def l1_smooth_loss(y1, y2): l1 = torch.abs(y1 - y2) cond = l1 < 1 l = torch.where(cond, 0.5 * l1**2, l1) l = torch.mean( l, dim=0 ) # sum alone the batch dimension, now the dimension is the same as input dimension loss_f = l1_smooth_loss elif args.loss == 'mse_decoupled': def mse_decoupled(y1, y2): # for angle terms, wrap it to -pi~pi l_0 = torch.abs(y1[:, 0] - y2[:, 0])**2 l_1 = torch.abs(y1[:, 1] - y2[:, 1])**2 l_2 = torch.abs(y1[:, 2] - y2[:, 2]) # angular dimension l_3 = torch.abs(y1[:, 3] - y2[:, 3])**2 cond = (l_2 > 1.0) * (l_2 <= 2.0 ) # np.pi after normalization is 1.0 l_2 = torch.where(cond, 2.0 - l_2, l_2) l_2 = l_2**2 l_0 = torch.mean(l_0) l_1 = torch.mean(l_1) l_2 = torch.mean(l_2) l_3 = torch.mean(l_3) return torch.stack([l_0, l_1, l_2, l_3]) loss_f = mse_decoupled mpnet = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size, cae, mlp, loss_f) # load net # load previously trained model if start epoch > 0 model_dir = args.model_dir model_dir = model_dir + 'cost_' + args.env_type + "_lr%f_%s_step_%d/" % ( args.learning_rate, args.opt, args.num_steps) if not os.path.exists(model_dir): os.makedirs(model_dir) model_path = 'cost_kmpnet_epoch_%d_direction_%d_step_%d.pkl' % ( args.start_epoch, args.direction, args.num_steps) torch_seed, np_seed, py_seed = 0, 0, 0 if args.start_epoch > 0: #load_net_state(mpnet, os.path.join(args.model_path, model_path)) load_net_state(mpnet, os.path.join(model_dir, model_path)) #torch_seed, np_seed, py_seed = load_seed(os.path.join(args.model_path, model_path)) torch_seed, np_seed, py_seed = load_seed( os.path.join(model_dir, model_path)) # set seed after loading torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) if torch.cuda.is_available(): mpnet.cuda() mpnet.mlp.cuda() mpnet.encoder.cuda() if args.opt == 'Adagrad': mpnet.set_opt(torch.optim.Adagrad, lr=args.learning_rate) elif args.opt == 'Adam': mpnet.set_opt(torch.optim.Adam, lr=args.learning_rate) elif args.opt == 'SGD': mpnet.set_opt(torch.optim.SGD, lr=args.learning_rate, momentum=0.9) elif args.opt == 'ASGD': mpnet.set_opt(torch.optim.ASGD, lr=args.learning_rate) if args.start_epoch > 0: #load_opt_state(mpnet, os.path.join(args.model_path, model_path)) load_opt_state(mpnet, os.path.join(model_dir, model_path)) # load train and test data print('loading...') obs, cost_dataset, cost_targets, env_indices, \ _, _, _, _ = data_loader.load_train_dataset_cost(N=args.no_env, NP=args.no_motion_paths, data_folder=args.path_folder, obs_f=True, direction=args.direction, dynamics=dynamics, enforce_bounds=enforce_bounds, system=system, step_sz=step_sz, num_steps=args.num_steps, multigoal=multigoal) # randomize the dataset before training data = list(zip(cost_dataset, cost_targets, env_indices)) random.shuffle(data) dataset, targets, env_indices = list(zip(*data)) dataset = list(dataset) targets = list(targets) env_indices = list(env_indices) dataset = np.array(dataset) targets = np.array(targets) env_indices = np.array(env_indices) # use 5% as validation dataset val_len = int(len(dataset) * 0.05) val_dataset = dataset[-val_len:] val_targets = targets[-val_len:] val_env_indices = env_indices[-val_len:] dataset = dataset[:-val_len] targets = targets[:-val_len] env_indices = env_indices[:-val_len] # Train the Models print('training...') writer_fname = 'cost_%s_%f_%s_direction_%d_step_%d' % ( args.env_type, args.learning_rate, args.opt, args.direction, args.num_steps) writer = SummaryWriter('./runs/' + writer_fname) record_i = 0 val_record_i = 0 loss_avg_i = 0 val_loss_avg_i = 0 loss_avg = 0. val_loss_avg = 0. loss_steps = 100 # record every 100 loss for epoch in range(args.start_epoch + 1, args.num_epochs + 1): print('epoch' + str(epoch)) val_i = 0 for i in range(0, len(dataset), args.batch_size): print('epoch: %d, training... path: %d' % (epoch, i + 1)) dataset_i = dataset[i:i + args.batch_size] targets_i = targets[i:i + args.batch_size] env_indices_i = env_indices[i:i + args.batch_size] # record bi = dataset_i.astype(np.float32) print('bi shape:') print(bi.shape) bt = targets_i bi = torch.FloatTensor(bi) bt = torch.FloatTensor(bt) bi = normalize(bi, args.world_size) mpnet.zero_grad() bi = to_var(bi) bt = to_var(bt) if obs is None: bobs = None else: bobs = obs[env_indices_i].astype(np.float32) bobs = torch.FloatTensor(bobs) bobs = to_var(bobs) print('before training losses:') print(mpnet.loss(mpnet(bi, bobs), bt)) mpnet.step(bi, bobs, bt) print('after training losses:') print(mpnet.loss(mpnet(bi, bobs), bt)) loss = mpnet.loss(mpnet(bi, bobs), bt) #update_line(hl, ax, [i//args.batch_size, loss.data.numpy()]) loss_avg += loss.cpu().data loss_avg_i += 1 if loss_avg_i >= loss_steps: loss_avg = loss_avg / loss_avg_i writer.add_scalar('train_loss', loss_avg, record_i) record_i += 1 loss_avg = 0. loss_avg_i = 0 # validation # calculate the corresponding batch in val_dataset dataset_i = val_dataset[val_i:val_i + args.batch_size] targets_i = val_targets[val_i:val_i + args.batch_size] env_indices_i = val_env_indices[val_i:val_i + args.batch_size] val_i = val_i + args.batch_size if val_i > val_len: val_i = 0 # record bi = dataset_i.astype(np.float32) print('bi shape:') print(bi.shape) bt = targets_i bi = torch.FloatTensor(bi) bt = torch.FloatTensor(bt) bi = normalize(bi, args.world_size) bi = to_var(bi) bt = to_var(bt) if obs is None: bobs = None else: bobs = obs[env_indices_i].astype(np.float32) bobs = torch.FloatTensor(bobs) bobs = to_var(bobs) loss = mpnet.loss(mpnet(bi, bobs), bt) print('validation loss: %f' % (loss.cpu().data)) val_loss_avg += loss.cpu().data val_loss_avg_i += 1 if val_loss_avg_i >= loss_steps: val_loss_avg = val_loss_avg / val_loss_avg_i writer.add_scalar('val_loss', val_loss_avg, val_record_i) val_record_i += 1 val_loss_avg = 0. val_loss_avg_i = 0 # Save the models if epoch > 0 and epoch % 50 == 0: model_path = 'cost_kmpnet_epoch_%d_direction_%d_step_%d.pkl' % ( epoch, args.direction, args.num_steps) #save_state(mpnet, torch_seed, np_seed, py_seed, os.path.join(args.model_path,model_path)) save_state(mpnet, torch_seed, np_seed, py_seed, os.path.join(model_dir, model_path)) writer.export_scalars_to_json("./all_scalars.json") writer.close()
def main(args): #global hl if torch.cuda.is_available(): torch.cuda.set_device(args.device) # environment setting cae = cae_identity mlp = MLP cpp_propagator = _sst_module.SystemPropagator() if args.env_type == 'pendulum': normalize = pendulum.normalize unnormalize = pendulum.unnormalize system = standard_cpp_systems.PSOPTPendulum() dynamics = None enforce_bounds = None step_sz = 0.002 num_steps = 20 elif args.env_type == 'cartpole': normalize = cart_pole.normalize unnormalize = cart_pole.unnormalize dynamics = cartpole.dynamics system = _sst_module.CartPole() enforce_bounds = cartpole.enforce_bounds step_sz = 0.002 num_steps = 20 elif args.env_type == 'cartpole_obs': normalize = cart_pole_obs.normalize unnormalize = cart_pole_obs.unnormalize system = _sst_module.CartPole() dynamics = cartpole.dynamics enforce_bounds = cartpole.enforce_bounds step_sz = 0.002 num_steps = 20 elif args.env_type == 'acrobot_obs': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP cae = CAE_acrobot_voxel_2d #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 obs_width = 6.0 IsInCollision = acrobot_obs.IsInCollision elif args.env_type == 'acrobot_obs_2': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP2 cae = CAE_acrobot_voxel_2d_2 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_3': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP3 cae = CAE_acrobot_voxel_2d_2 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_4': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP3 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_5': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_6': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP4 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_7': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP5 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 elif args.env_type == 'acrobot_obs_8': normalize = acrobot_obs.normalize unnormalize = acrobot_obs.unnormalize system = _sst_module.PSOPTAcrobot() mlp = mlp_acrobot.MLP6 cae = CAE_acrobot_voxel_2d_3 #dynamics = acrobot_obs.dynamics dynamics = lambda x, u, t: cpp_propagator.propagate(system, x, u, t) enforce_bounds = acrobot_obs.enforce_bounds step_sz = 0.02 num_steps = 20 mpnet = KMPNet(args.total_input_size, args.AE_input_size, args.mlp_input_size, args.output_size, cae, mlp) # load net # load previously trained model if start epoch > 0 model_dir = args.model_dir model_dir = model_dir + 'cost_' + args.env_type + "_lr%f_%s_step_%d/" % ( args.learning_rate, args.opt, args.num_steps) if not os.path.exists(model_dir): os.makedirs(model_dir) model_path = 'cost_kmpnet_epoch_%d_direction_%d_step_%d.pkl' % ( args.start_epoch, args.direction, args.num_steps) torch_seed, np_seed, py_seed = 0, 0, 0 if args.start_epoch > 0: #load_net_state(mpnet, os.path.join(args.model_path, model_path)) load_net_state(mpnet, os.path.join(model_dir, model_path)) #torch_seed, np_seed, py_seed = load_seed(os.path.join(args.model_path, model_path)) torch_seed, np_seed, py_seed = load_seed( os.path.join(model_dir, model_path)) # set seed after loading torch.manual_seed(torch_seed) np.random.seed(np_seed) random.seed(py_seed) """ if torch.cuda.is_available(): mpnet.cuda() mpnet.mlp.cuda() mpnet.encoder.cuda() if args.opt == 'Adagrad': mpnet.set_opt(torch.optim.Adagrad, lr=args.learning_rate) elif args.opt == 'Adam': mpnet.set_opt(torch.optim.Adam, lr=args.learning_rate) elif args.opt == 'SGD': mpnet.set_opt(torch.optim.SGD, lr=args.learning_rate, momentum=0.9) elif args.opt == 'ASGD': mpnet.set_opt(torch.optim.ASGD, lr=args.learning_rate) """ if args.start_epoch > 0: #load_opt_state(mpnet, os.path.join(args.model_path, model_path)) load_opt_state(mpnet, os.path.join(model_dir, model_path)) # load train and test data print('loading...') seen_test_data = data_loader.load_test_dataset(args.seen_N, args.seen_NP, args.path_folder, True, args.seen_s, args.seen_sp) obc, obs, paths, sgs, path_lengths, controls, costs = seen_test_data obc = obc.astype(np.float32) for pi in range(len(paths)): new_obs_i = [] obs_i = obs[pi] plan_res_env = [] plan_time_env = [] for k in range(len(obs_i)): obs_pt = [] obs_pt.append(obs_i[k][0] - obs_width / 2) obs_pt.append(obs_i[k][1] - obs_width / 2) obs_pt.append(obs_i[k][0] - obs_width / 2) obs_pt.append(obs_i[k][1] + obs_width / 2) obs_pt.append(obs_i[k][0] + obs_width / 2) obs_pt.append(obs_i[k][1] + obs_width / 2) obs_pt.append(obs_i[k][0] + obs_width / 2) obs_pt.append(obs_i[k][1] - obs_width / 2) new_obs_i.append(obs_pt) obs_i = new_obs_i for pj in range(len(paths[pi])): # on the entire state space, visualize the cost # visualization """ plt.ion() fig = plt.figure() ax = fig.add_subplot(111) #ax.set_autoscale_on(True) ax.set_xlim(-np.pi, np.pi) ax.set_ylim(-np.pi, np.pi) hl, = ax.plot([], [], 'b') #hl_real, = ax.plot([], [], 'r') hl_for, = ax.plot([], [], 'g') hl_back, = ax.plot([], [], 'r') hl_for_mpnet, = ax.plot([], [], 'lightgreen') hl_back_mpnet, = ax.plot([], [], 'salmon') #print(obs) def update_line(h, ax, new_data): new_data = wrap_angle(new_data, propagate_system) h.set_data(np.append(h.get_xdata(), new_data[0]), np.append(h.get_ydata(), new_data[1])) #h.set_xdata(np.append(h.get_xdata(), new_data[0])) #h.set_ydata(np.append(h.get_ydata(), new_data[1])) def remove_last_k(h, ax, k): h.set_data(h.get_xdata()[:-k], h.get_ydata()[:-k]) def draw_update_line(ax): #ax.relim() #ax.autoscale_view() fig.canvas.draw() fig.canvas.flush_events() #plt.show() def wrap_angle(x, system): circular = system.is_circular_topology() res = np.array(x) for i in range(len(x)): if circular[i]: # use our previously saved version res[i] = x[i] - np.floor(x[i] / (2*np.pi))*(2*np.pi) if res[i] > np.pi: res[i] = res[i] - 2*np.pi return res """ dtheta = 0.1 feasible_points = [] infeasible_points = [] imin = 0 imax = int(2 * np.pi / dtheta) x0 = paths[pi][pj][0] xT = paths[pi][pj][-1] # visualize the cost on all grids costmaps = [] cost_to_come = [] cost_to_go = [] for i in range(imin, imax): costmaps_i = [] for j in range(imin, imax): x = np.array( [dtheta * i - np.pi, dtheta * j - np.pi, 0., 0.]) cost_to_come_in = np.array([np.concatenate([x0, x])]) cost_to_come_in = torch.from_numpy(cost_to_come_in).type( torch.FloatTensor) cost_to_come_in = normalize(cost_to_come_in, args.world_size) cost_to_go_in = np.array([np.concatenate([x, xT])]) cost_to_go_in = torch.from_numpy(cost_to_go_in).type( torch.FloatTensor) cost_to_go_in = normalize(cost_to_go_in, args.world_size) cost_to_come.append(cost_to_come_in) cost_to_go.append(cost_to_go_in) cost_to_come = torch.cat(cost_to_come, 0) cost_to_go = torch.cat(cost_to_go, 0) print(cost_to_go.size()) obc_i_torch = torch.from_numpy(np.array([obc[pi]])).type( torch.FloatTensor).repeat(len(cost_to_go), 1, 1, 1) print(obc_i_torch.size()) cost_sum = mpnet(cost_to_come, obc_i_torch) + mpnet( cost_to_go, obc_i_torch) cost_to_come_val = mpnet(cost_to_come, obc_i_torch).detach().numpy().reshape( imax - imin, -1) cost_to_go_val = mpnet(cost_to_go, obc_i_torch).detach().numpy().reshape( imax - imin, -1) print('cost_to_come:') print(cost_to_come_val) print('cost_to_come[(imax+imin)//2,(imax+imin)//2]: ', cost_to_come_val[(imax + imin) // 2, (imax + imin) // 2]) print('cost_to_go_val:') print(cost_to_go_val) cost_sum = cost_sum[:, 0].detach().numpy().reshape(imax - imin, -1) for i in range(imin, imax): costmaps_i = [] for j in range(imin, imax): costmaps_i.append(cost_sum[i][j]) #if IsInCollision(x, obs_i): # costmaps_i.append(1000.) #else: # costmaps_i.append(cost_sum[i][j]) costmaps.append(costmaps_i) costmaps = np.array(costmaps) # plot the costmap print(costmaps) print(costmaps.min()) print(costmaps.max()) costmaps = costmaps - costmaps.min() + 1.0 # map to 1.0 to infty costmaps = np.log(costmaps) im = plt.imshow(costmaps, cmap='hot', interpolation='nearest') for i in range(imin, imax): for j in range(imin, imax): x = np.array( [dtheta * i - np.pi, dtheta * j - np.pi, 0., 0.]) if IsInCollision(x, obs_i): infeasible_points.append(x) else: feasible_points.append(x) feasible_points = np.array(feasible_points) infeasible_points = np.array(infeasible_points) print('feasible points') print(feasible_points) print('infeasible points') print(infeasible_points) #ax.scatter(feasible_points[:,0], feasible_points[:,1], c='yellow') #ax.scatter(infeasible_points[:,0], infeasible_points[:,1], c='pink') #for i in range(len(data)): # update_line(hl, ax, data[i]) #draw_update_line(ax) #state_t = start_state plt.colorbar(im) plt.show() plt.waitforbuttonpress()