Beispiel #1
0
                                            'val': val_loss}, epoch * len(tr_dl) + step)
                tqdm.write('global_step: {:3}, tr_loss: {:.3f}, val_loss: {:.3f}'.format(epoch * len(tr_dl) + step,
                                                                                         tr_loss / (step + 1),
                                                                                         val_loss))
                model.train()
        else:
            tr_loss /= (step + 1)
            tr_acc /= (step + 1)

            tr_summary = {'loss': tr_loss, 'acc': tr_acc}
            val_summary = evaluate(model, val_dl, {'loss': loss_fn, 'acc': acc}, device)
            tqdm.write('epoch : {}, tr_loss: {:.3f}, val_loss: '
                       '{:.3f}, tr_acc: {:.2%}, val_acc: {:.2%}'.format(epoch + 1, tr_summary['loss'],
                                                                        val_summary['loss'], tr_summary['acc'],
                                                                        val_summary['acc']))

            val_loss = val_summary['loss']
            is_best = val_loss < best_val_loss

            if is_best:
                state = {'epoch': epoch + 1,
                         'model_state_dict': model.state_dict(),
                         'opt_state_dict': opt.state_dict()}
                summary = {'train': tr_summary, 'validation': val_summary}

                summary_manager.update(summary)
                summary_manager.save('summary_{}.json'.format(args.type))
                checkpoint_manager.save_checkpoint(state, 'best_{}.tar'.format(args.type))

                best_val_loss = val_loss
Beispiel #2
0
def main(args):
    dataset_config = Config(args.dataset_config)
    model_config = Config(args.model_config)
    ptr_config_info = Config(f"conf/pretrained/{model_config.type}.json")

    exp_dir = Path("experiments") / model_config.type
    exp_dir = exp_dir.joinpath(
        f"epochs_{args.epochs}_batch_size_{args.batch_size}_learning_rate_{args.learning_rate}"
        f"_weight_decay_{args.weight_decay}")

    if not exp_dir.exists():
        exp_dir.mkdir(parents=True)

    if args.fix_seed:
        torch.manual_seed(777)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False

    preprocessor = get_preprocessor(ptr_config_info, model_config)

    with open(ptr_config_info.config, mode="r") as io:
        ptr_config = json.load(io)

    config = BertConfig()
    config.update(ptr_config)
    model = SentenceClassifier(config,
                               num_classes=model_config.num_classes,
                               vocab=preprocessor.vocab)
    bert_pretrained = torch.load(ptr_config_info.bert)
    model.load_state_dict(bert_pretrained, strict=False)

    tr_dl, val_dl = get_data_loaders(dataset_config, preprocessor,
                                     args.batch_size)

    loss_fn = nn.CrossEntropyLoss()
    opt = optim.Adam([
        {
            "params": model.bert.parameters(),
            "lr": args.learning_rate / 100
        },
        {
            "params": model.classifier.parameters(),
            "lr": args.learning_rate
        },
    ],
                     weight_decay=args.weight_decay)

    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    model.to(device)

    writer = SummaryWriter(f'{exp_dir}/runs')
    checkpoint_manager = CheckpointManager(exp_dir)
    summary_manager = SummaryManager(exp_dir)
    best_val_loss = 1e+10

    for epoch in tqdm(range(args.epochs), desc='epochs'):

        tr_loss = 0
        tr_acc = 0

        model.train()
        for step, mb in tqdm(enumerate(tr_dl), desc='steps', total=len(tr_dl)):
            x_mb, y_mb = map(lambda elm: elm.to(device), mb)
            opt.zero_grad()
            y_hat_mb = model(x_mb)
            mb_loss = loss_fn(y_hat_mb, y_mb)
            mb_loss.backward()
            opt.step()

            with torch.no_grad():
                mb_acc = acc(y_hat_mb, y_mb)

            tr_loss += mb_loss.item()
            tr_acc += mb_acc.item()

            if (epoch * len(tr_dl) + step) % args.summary_step == 0:
                val_loss = evaluate(model, val_dl, {'loss': loss_fn},
                                    device)['loss']
                writer.add_scalars('loss', {
                    'train': tr_loss / (step + 1),
                    'val': val_loss
                },
                                   epoch * len(tr_dl) + step)
                model.train()
        else:
            tr_loss /= (step + 1)
            tr_acc /= (step + 1)

            tr_summary = {'loss': tr_loss, 'acc': tr_acc}
            val_summary = evaluate(model, val_dl, {
                'loss': loss_fn,
                'acc': acc
            }, device)
            tqdm.write(
                f"epoch: {epoch+1}\n"
                f"tr_loss: {tr_summary['loss']:.3f}, val_loss: {val_summary['loss']:.3f}\n"
                f"tr_acc: {tr_summary['acc']:.2%}, val_acc: {val_summary['acc']:.2%}"
            )

            val_loss = val_summary['loss']
            is_best = val_loss < best_val_loss

            if is_best:
                state = {
                    'epoch': epoch + 1,
                    'model_state_dict': model.state_dict(),
                    'opt_state_dict': opt.state_dict()
                }
                summary = {'train': tr_summary, 'validation': val_summary}

                summary_manager.update(summary)
                summary_manager.save('summary.json')
                checkpoint_manager.save_checkpoint(state, 'best.tar')

                best_val_loss = val_loss