def __init__(self, do_cuda=True): self.lock = RLock() self.opts = rfnetOptions(do_cuda) print(self.opts) print('rfnet init') #print(f"{gct()} model init") print("model init") det = RFDetSO( cfg.TRAIN.score_com_strength, cfg.TRAIN.scale_com_strength, cfg.TRAIN.NMS_THRESH, cfg.TRAIN.NMS_KSIZE, cfg.TRAIN.TOPK, cfg.MODEL.GAUSSIAN_KSIZE, cfg.MODEL.GAUSSIAN_SIGMA, cfg.MODEL.KSIZE, cfg.MODEL.padding, cfg.MODEL.dilation, cfg.MODEL.scale_list, ) des = HardNetNeiMask(cfg.HARDNET.MARGIN, cfg.MODEL.COO_THRSH) model = RFNetSO( det, des, cfg.LOSS.SCORE, cfg.LOSS.PAIR, cfg.PATCH.SIZE, cfg.TRAIN.TOPK ) device = torch.device("cuda") model = model.to(device) #resume = args.resume #resume = "/home/cviss3/PycharmProjects/gensynth_dev_env/pyslam/thirdparty/rfnet/runs/10_24_09_25/model/e121_NN_0.480_NNT_0.655_NNDR_0.813_MeanMS_0.649.pth.tar" resume = "/content/RFnetpyslam/thirdparty/rfnet/runs/10_24_09_25/model/e121_NN_0.480_NNT_0.655_NNDR_0.813_MeanMS_0.649.pth.tar" print('==> Loading pre-trained network.') checkpoint = torch.load(resume) model.load_state_dict(checkpoint["state_dict"]) self.fe = model print('==> Successfully loaded pre-trained network.') self.device = device self.pts = [] self.kps = [] self.des = [] self.img = [] self.heatmap = [] self.frame = None self.frameFloat = None self.keypoint_size = 20 # just a representative size for visualization and in order to convert extracted points to cv2.KeyPoint
torch.backends.cudnn.deterministic = True random.seed(seed) torch.manual_seed(seed) np.random.seed(seed) ############################################################################### # Build the model ############################################################################### print(f"{gct()} : Build the model") det = RFDetSO( cfg.TRAIN.score_com_strength, cfg.TRAIN.scale_com_strength, cfg.TRAIN.NMS_THRESH, cfg.TRAIN.NMS_KSIZE, cfg.TRAIN.TOPK, cfg.MODEL.GAUSSIAN_KSIZE, cfg.MODEL.GAUSSIAN_SIGMA, cfg.MODEL.KSIZE, cfg.MODEL.padding, cfg.MODEL.dilation, cfg.MODEL.scale_list, ) des = HardNetNeiMask(cfg.HARDNET.MARGIN, cfg.MODEL.COO_THRSH) model = RFNetSO(det, des, cfg.LOSS.SCORE, cfg.LOSS.PAIR, cfg.PATCH.SIZE, cfg.TRAIN.TOPK) if mgpu: model = torch.nn.DataParallel(model) model = model.to(device=device) ############################################################################### # Load train data