Beispiel #1
0
 def process(img):
     img = bytes_to_file(img)
     try:
         img_A, img_B = read_split_image(img)
         if augment:
             # augment the image by:
             # 1) enlarge the image
             # 2) random crop the image back to its original size
             # NOTE: image A and B needs to be in sync as how much
             # to be shifted
             w, h = img_A.shape
             multiplier = random.uniform(1.00, 1.05)
             # add an eps to prevent cropping issue
             nw = int(multiplier * w) + 1
             nh = int(multiplier * h) + 1
             shift_x = int(np.ceil(np.random.uniform(0.01, nw - w)))
             shift_y = int(np.ceil(np.random.uniform(0.01, nh - h)))
             img_A = shift_and_resize_image(img_A, shift_x, shift_y, nw, nh)
             img_B = shift_and_resize_image(img_B, shift_x, shift_y, nw, nh)
         img_A = normalize_image(img_A)
         img_B = normalize_image(img_B)
         merged = np.stack([img_A, img_B], axis=2)
         return merged
     finally:
         img.close()
Beispiel #2
0
        super(NeverEndingLoopingProvider, self).__init__(obj_path)

    def get_random_embedding_iter(self, batch_size, embedding_ids):
        while True:
            # np.random.shuffle(self.data.examples)
            rand_iter = super(NeverEndingLoopingProvider, self) \
                .get_random_embedding_iter(batch_size, embedding_ids)
            for labels, images in rand_iter:
                yield labels, images


if __name__ == '__main__':
    from PIL import Image

    pkl_images = PickledImageProvider("../binary/train.obj")
    examples = pkl_images.examples
    print(len(examples))

    b_img0 = examples[0][1]  # idx, binary
    img0 = bytes_to_file(b_img0)
    img_A, img_B = read_split_image(img0)
    img = Image.fromarray(np.uint8(img_A), "RGB")
    # img.save('my.png')

    # mat =  misc.imread(img0).astype(np.float)
    # side = int(mat.shape[1] / 2)
    # assert side * 2 == mat.shape[1]
    # img_A = mat[:, :side]  # target
    # img = Image.fromarray(np.uint8(img_B))
    img.show()