mod = RegionEncoder(n_nodes=n_nodes,
                            n_nodal_features=n_nodal_features,
                            h_dim_graph=h_dim_graph,
                            h_dim_img=h_dim_img,
                            lambda_ae=lambda_ae,
                            lambda_edge=lambda_edge,
                            lambda_g=lambda_g,
                            neg_samples_gcn=neg_samples_gcn,
                            h_dim_size=h_dim_size,
                            img_dims=img_dims,
                            lambda_weight_decay=lambda_weight_decay)
    mod.run_train_job(region_grid, epochs=epochs, lr=learning_rate, tol_order=3)

    if torch.cuda.is_available():
        embedding = mod.embedding.data.cpu().numpy()
    else:
        embedding = mod.embedding.data.numpy()




    fname = "{}embedding-iter-{}.txt".format(OUT_DIR, i)
    write_embeddings(arr=embedding, n_nodes=n_nodes, fname=fname)

    with open(OUT_DIR + "params-{}.txt".format(i), 'w') as f:
        param = params[i]
        f.write("{}: ".format(i))
        for p in param:
            f.write("{:.4f}, ".format(p))

        f.write("\n")
Beispiel #2
0
    epochs = int(sys.argv[1])
    learning_rate = float(sys.argv[2])
else:
    epochs = 25
    learning_rate = .1

context_gcn = 4
neg_samples_gcn = 10

c = get_config()
region_grid = RegionGrid(config=c)
region_grid.load_weighted_mtx()

n_nodes = len(region_grid.regions)
h_dim_size = int(c['hidden_dim_size'])
n_nodal_features = region_grid.feature_matrix.shape[1]



gcn = GCN(n_features=n_nodal_features, h_dim_size=h_dim_size)
embedding = gcn.run_train_job(region_grid, n_epoch=epochs, learning_rate=learning_rate, penalty=(1, 1),
                              n_neg_samples=context_gcn, n_pos_samples=neg_samples_gcn)

if torch.cuda.is_available():
    embedding = embedding.data.cpu().numpy()
else:
    embedding = embedding.data.numpy()

embed_fname = '{}gcn_all_embedding.txt'.format(c['data_dir_main'])
write_embeddings(arr=embedding, n_nodes=region_grid.n_regions, fname=embed_fname)
if __name__ == "__main__":

    import numpy as np
    from grid.create_grid import RegionGrid

    if len(sys.argv) > 1:
        epochs = int(sys.argv[1])
        learning_rate = float(sys.argv[2])
        batch_size = int(sys.argv[3])
    else:
        epochs = 25
        learning_rate = .05
        batch_size = 25

    c = get_config()
    region_grid = RegionGrid(config=c)
    region_grid.load_img_data(std_img=True)

    img_tensor = torch.Tensor(region_grid.img_tensor)
    h_dim_size = int(c['hidden_dim_size'])

    auto_encoder = AutoEncoder(img_dims=(50, 50), h_dim_size=h_dim_size)
    embedding = auto_encoder.run_train_job(n_epoch=epochs, img_tensor=img_tensor, lr=learning_rate)

    if torch.cuda.is_available():
        embedding = embedding.data.cpu().numpy()
    else:
        embedding = embedding.data.numpy()

    write_embeddings(arr=embedding, n_nodes=region_grid.n_regions, fname=c['tile2vec_file'])
Beispiel #4
0
h_dim_graph = 64
h_dim_img = 64
h_dim_size = int(c['hidden_dim_size'])
lambda_ae = .5
lambda_edge = .1
lambda_g = .1
neg_samples_gcn = 10
epochs = 15
learning_rate = .1

if len(sys.argv) > 1:
    epochs = int(sys.argv[1])
    learning_rate = float(sys.argv[2])

mod = RegionEncoder(n_nodes=n_nodes,
                    n_nodal_features=n_nodal_features,
                    h_dim_graph=h_dim_graph,
                    h_dim_img=h_dim_img,
                    lambda_ae=lambda_ae,
                    lambda_edge=lambda_edge,
                    lambda_g=lambda_g,
                    neg_samples_gcn=neg_samples_gcn,
                    h_dim_size=h_dim_size)
mod.run_train_job(region_grid, epochs=epochs, lr=learning_rate, tol_order=3)
if torch.cuda.is_available():
    embedding = mod.embedding.data.cpu().numpy()
else:
    embedding = mod.embedding.data.numpy()

write_embeddings(arr=embedding, n_nodes=n_nodes, fname=c['embedding_file'])
mod.plt_learning_curve("plots/region-learning-curve.pdf", plt_all=False, log_scale=True)
Beispiel #5
0
    if len(sys.argv) > 1:
        epochs = int(sys.argv[1])
        learning_rate = float(sys.argv[2])
        batch_size = int(sys.argv[3])
    else:
        epochs = 25
        learning_rate = .1
        batch_size = 20

    c = get_config()
    region_grid = RegionGrid(config=c)
    region_grid.load_img_data(std_img=True)

    img_tensor = torch.Tensor(region_grid.img_tensor)
    h_dim_size = int(c['hidden_dim_size'])

    auto_encoder = AutoEncoder(img_dims=(50, 50), h_dim_size=h_dim_size)
    embedding = auto_encoder.run_train_job(n_epoch=epochs,
                                           batch_size=batch_size,
                                           img_tensor=img_tensor,
                                           lr=learning_rate)

    if torch.cuda.is_available():
        embedding = embedding.data.cpu().numpy()
    else:
        embedding = embedding.data.numpy()

    write_embeddings(arr=embedding,
                     n_nodes=region_grid.n_regions,
                     fname=c['autoencoder_embedding_file'])
Beispiel #6
0
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from config import get_config
from grid.create_grid import RegionGrid
from model.utils import write_embeddings


c = get_config()
region_grid = RegionGrid(config=c)
region_grid.load_img_data(std_img=True)
region_grid.load_img_data()

h_dim_size = int(c['hidden_dim_size'])

img_dims = region_grid.img_tensor.shape
n_samples = img_dims[0]
n_channel = img_dims[1]
n_rows = img_dims[2]
n_cols = img_dims[3]
flat_shape = n_channel*n_rows*n_cols
X = region_grid.img_tensor.reshape((n_samples, flat_shape))


pca_model = PCA(n_components=h_dim_size)

embedding = pca_model.fit_transform(X)



write_embeddings(embedding, n_nodes=n_samples, fname=c['pca_file'])