device = setup.init_seed()
train_data = gmm_data.get_data()

###################################### visualize ###############################################################

# create loader with data to iterate, batch size is 100
data_loader = torch.utils.data.DataLoader(train_data,
                                          batch_size=100,
                                          shuffle=True)
# number of batches, 100000 / 100 = 1000
num_batches = len(data_loader)

# start writing networks

dis = model.DNet().float().to(device)  # generate a funtion
gen = model.GNet().float().to(device)  # generate a function

# hidden: torch.randn(size, 100)

################################################# loss function #############################################
criterion = nn.BCELoss().to(
    device
)  # binary cross entropy loss, nothing fancy but a dirty way to compute the log
lr = 0.01

################################################# wrap the training as functions ################################

# the problem is a min-max optimization: min_G max_D log(D(x)) + log(1 - D(G(z)))


# minimize -log(D(x)) - log (1 - D(G(z))), take one gradient descent step
Beispiel #2
0
TRAIN_FOLDER = '/home/alfarihfz/data/Pulmonary/train/'
BATCH_SIZE=64
EPOCH = 500
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def image_loader(path):
    return Image.open(path)

transform = transforms.Compose(
    [
    transforms.ToTensor(),
    ]
)

gnet = model.GNet(device=DEVICE)
hog = model.HOGLayer(device=DEVICE)

trainData = datasets.DatasetFolder(root=TRAIN_FOLDER,
                                    loader=image_loader,
                                    extensions=['jpeg', 'png'],
                                    transform=transform)
dataLoader = DataLoader(trainData, batch_size=BATCH_SIZE, shuffle=True)

optimizer = torch.optim.Adam(gnet.parameters(), weight_decay=5e-4)
criterion = torch.nn.MSELoss()

for epoch in range(EPOCH):
    batch_loss = 0.0
    for i, data in enumerate(dataLoader):
        img,_ = data
        nargs='?',
        default='',
        help='Path to image folder. This is where the images from the run will be saved.'
    )
    args = parser.parse_args()

    # check that model Keras version is same as local Keras version
    f = h5py.File(args.pred_model, mode='r')
    model_version = f.attrs.get('keras_version')
    keras_version = str(keras_version).encode('utf8')

    if model_version != keras_version:
        print('You are using Keras version ', keras_version,
              ', but the model was built using ', model_version)

    pred_model = model.GNet()._model
    pred_model.load_weights(args.pred_model)

    if args.image_folder != '':
        print("Creating image folder at {}".format(args.image_folder))
        if not os.path.exists(args.image_folder):
            os.makedirs(args.image_folder)
        else:
            shutil.rmtree(args.image_folder)
            os.makedirs(args.image_folder)
        print("RECORDING THIS RUN ...")
    else:
        print("NOT RECORDING THIS RUN ...")

    # wrap Flask application with engineio's middleware
    app = socketio.Middleware(sio, app)