def fit_inverse_model(self): # Pre-processing self.pre_process() has_fit_e = has_fit_f = False # Fit change-point model for electricity consumption print('Fitting electricity model...') if (hasattr(self, "weather_electricity")): self.im_electricity = model.InverseModel(self.weather_electricity.v_T_C, self.eui_daily_electricity, 'Electricity') has_fit_e = self.im_electricity.fit_model() if (has_fit_e): self.im_electricity.plot_IM(self) # Fit change-point model for fossil fuel consumption print('Fitting fossil fuel model...') if (hasattr(self, "weather_fossil_fuel")): self.im_fossil_fuel = model.InverseModel(self.weather_fossil_fuel.v_T_C, self.eui_daily_fossil_fuel, 'Fossil Fuel') has_fit_f = self.im_fossil_fuel.fit_model() if (has_fit_f): self.im_fossil_fuel.plot_IM(self) return (has_fit_e or has_fit_f)
import conf # Tensorboard logging import tensorboard_logger as tboard timestamp = str(round(time.time()))[-6:] tb_dir = conf.DIR + "/runs/es_" + timestamp tboard.configure(tb_dir, flush_secs=5) # gym env = gym.make("BreakoutDeterministic-v4") conf.OUTPUT_NUM = env.action_space.n # models and learning encoder = model.Encoder() inverse_model = model.InverseModel(encoder=encoder) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adadelta( inverse_model.parameters(), lr=0.1) #torch.optim.Adam(inverse_model.parameters(), lr=0.001) # buffer memory = memory.MemoryBuffer(size=20000, batch_size=8, replace=True, bias_prob=0.3) curr_state = None episode_i = 0 while True: