Beispiel #1
0
def _get_model(is_train):
    if FLAGS.model == 'lstm':
        return model.LSTMModel(is_train=is_train)
    elif FLAGS.model == 'cnn':
        return model.SimpleCNNModel(is_train=is_train)
    elif FLAGS.model == 'conv-lstm':
        return model.ConvLSTMModel(is_train=is_train)
    else:
        raise AttributeError("Model unimplemented: " + FLAGS.model)
Beispiel #2
0
def main(args):
    # TODO: Create an independent function for training & validation to improve readability
    # TODO: Fix gradient vanishing problem after a certain epochs
    model_config = ModelConfig()
    data = CryptoData(path="../data/market_data.csv",
                      model_config=model_config)

    with tf.Graph().as_default(), tf.Session() as sess:
        m = model.LSTMModel(is_training=True, model_config=model_config)
        tf.global_variables_initializer().run()
        global_step = 0
        for epoch in range(model_config.max_epoches):
            lr_decay = model_config.lr_decay_rate**max(
                epoch - model_config.decay_range, 0)
            sess.run(m.update_lr,
                     feed_dict={m._new_lr: lr_decay * model_config.initial_lr})
            data.reset()

            train_loss = 0
            batch_count = 0
            while not data.is_finished():
                trainX, trainY = data.next_training_batch(
                    batch_size=model_config.batch_size,
                    num_steps=model_config.num_steps,
                    time_lap=model_config.time_lap)
                if len(trainX) == model_config.batch_size:
                    _, _loss = sess.run([m.train_op, m.loss],
                                        feed_dict={
                                            m.input: trainX,
                                            m.target: trainY
                                        })
                    global_step += 1
                    train_loss += _loss
                    batch_count += 1
            valX, valY = data.validation_set(model_config.batch_size)
            val_loss = sess.run(m.loss,
                                feed_dict={
                                    m.input: valX,
                                    m.target: valY
                                })
            print(
                "Epoch: {:d}, Global steps: {:d}\n  Training Loss: {:.1f}, Validation Loss: {:.1f}"
                .format(epoch, global_step, train_loss / batch_count,
                        val_loss))
Beispiel #3
0
    scaler.fit(csv_data)
    csv_data.iloc[:, :] = scaler.transform(csv_data)[:, :]

    INPUT_DIM = len(csv_data.columns)
    OUTPUT_DIM = INPUT_DIM
    HIDDEN_DIM = 15
    BATCH_SIZE = 1
    NUM_LAYERS = 1
    NUM_EPOCHS = 1
    SEQ_SIZE = 60
    SKIP_SIZE = 1

    model = model.LSTMModel(
        input_dim=INPUT_DIM,
        output_dim=OUTPUT_DIM,
        hidden_dim=HIDDEN_DIM,
        batch_size=BATCH_SIZE,
        num_layers=NUM_LAYERS,
    )
    model.to(device=DEVICE)

    loss_fn = torch.nn.MSELoss(reduction="sum")
    optimiser = torch.optim.Adam(model.parameters(), lr=1e-1)

    training_data = make_training_data()
    print(training_data[0][0].shape[0])

    real = csv_data.iloc[:, -1]
    """
    loss = 0
    for epoch in range(NUM_EPOCHS):