Beispiel #1
0
def register():
    # 读取文件,查看文件里是否有数据。如果文件不存在,默认是一个字典
    data = file_manager.read_json('data.json', {})
    while True:
        teacher_name = input('请输入账号(3~6位):')
        if not 3 <= len(teacher_name) <= 6:
            print('账号不符合要求,请重新输入!')
        else:
            break

    if teacher_name in data:
        print('注册失败!该账号已经注册过!')
        return

    while True:
        password = input('请输入密码(6~12位):')
        if not 6 <= len(password) <= 12:
            print('密码不符合要求,请重新输入!')
        else:
            break

    # 用户名密码都已经输入正确以后,创建一个teacher对象
    t = model.Teacher(teacher_name, password)
    data[t.name] = t.password

    file_manager.write_json('data.json', data)
Beispiel #2
0
def create_model(flags, input_ids, seg_ids, input_mask, labels, n_label, is_training):

    bs_per_core = tf.shape(input_ids)[0]
    in_ids = tf.transpose(input_ids, [1, 0])
    seg_ids = tf.transpose(seg_ids, [1, 0])
    input_mask = tf.transpose(input_mask, [1, 0])
    labels = tf.reshape(labels, [bs_per_core])
    
    xlnet_model = model.Teacher(
        flags=flags,
        input_ids=in_ids,
        seg_ids=seg_ids,
        input_mask=input_mask
    )

    output = xlnet_model.get_output()

    with tf.variable_scope("model/loss", reuse=tf.AUTO_REUSE):
        if is_training:
            output = tf.nn.dropout(output, rate=flags.dropout)

        logit = tf.keras.layers.Dense(n_label, kernel_initializer=xln._get_initializer(flags))(output)
        log_prob = tf.nn.log_softmax(logit, axis=-1)

        one_hot_labels = tf.one_hot(labels, depth=n_label, dtype=tf.float32)

        per_sample_loss = -tf.reduce_sum(one_hot_labels*log_prob, axis=-1)
        loss = tf.reduce_mean(per_sample_loss)

    return loss, log_prob, logit
Beispiel #3
0
def register():
    # 读取文件,查看文件中有没有数据
    data = file_manager.read_json('data.json', {})

    while True:
        teacher_name = input('请输入您的用户名:(3~12位):')
        if not 3 <= len(teacher_name) <= 12:
            print('用户名不符合要求,请重新输入')
        else:
            break

    if teacher_name in data:
        print('注册失败!该账号已经注册过!')
        return

    while True:
        password = input('请输入您的密码:(6~12):')
        if not 6 <= len(password) <= 12:
            print('您输入密码有误,请重新输入')
        else:
            break
    # 用户密码都已经输入正确以后,创建一个teacher对象
    t = model.Teacher(teacher_name, password)
    data[t.name] = t.password
    # data[teacher_name] = password
    # print(teacher)
    file_manager.write_json('data.json', data)
Beispiel #4
0
def register():
    data = file_manager.read_json('data.json', {})

    while True:
        teacher_name = input('请输入账号(3-6位):')
        if not 3 <= len(teacher_name) <= 6:
            print('账号不符合要求,请重新输入!')
        else:
            break

    if teacher_name in data:
        print('注册失败!该账户已经被注册了!')
        return

    while True:
        password = input('请输入账号(6-12位):')
        if not 6 <= len(password) <= 12:
            print('账号不符合要求,请重新输入!')
        else:
            break

    # 创建一个teacher对象,保存数据。
    t = model.Teacher(teacher_name, password)
    data[t.name] = t.password
    file_manager.write_json('data.json', data)
Beispiel #5
0
def register():
    # 读取json文件,如果文件不存在默认是个字典
    data = file_manager.read_json('data')
    while True:
        teacher_name = input('请输入用户名(3~6位):')
        if not 3 <= len(teacher_name) <= 6:
            print('不符合要求,请重新输入!')
        else:
            break

    while True:
        password = input('请输入密码(6~12位):')
        if not 6 <= len(password) <= 12:
            print('不符合要求,请重新输入!')
        else:
            break
    # 输入正确后可创建一个对象
    teacher = model.Teacher(data, password)
    # 建议将密码加密保存
    data[teacher_name] = teacher.password
    file_manager.write_json('data', data)
Beispiel #6
0
def register():
    while True:
        user_name = input('请输入账号(3~6位):')
        if 3 <= len(user_name) <= 6:
            break
        print('账号不符合要求,请重新输入!')

    all_user = file_manager.read_json(USERS_FILE, {})

    if user_name in all_user:
        print("注册失败!该账号已经注册过!")
        return

    while True:
        password = input('请输入密码(6~12位):')
        if 6 <= len(password) <= 12:
            break
        print('密码不符合要求,请重新输入!')

    s = model.Teacher(user_name, password)
    all_user[s.name] = s.password
    file_manager.write_json(USERS_FILE, all_user)
Beispiel #7
0
def register():
    # 读取文件,查看文件里是否有数据。如果文件不存在,默认是一个字典
    data = file_manager.read_json('data.json', {})
    while True:
        teacher_name = input("请输入账号(3-6位)")
        if not 3 <= len(teacher_name) <= 6:
            print("账号输入有误")
        else:
            break

    if teacher_name in data:
        print("该账号已经注册")
        return

    while True:
        teacher_password = input("请输入密码(6-12位)")
        if not 6 <= len(teacher_password) <= 12:
            print("密码输入有误")
        else:
            break

    t = model.Teacher(teacher_name, tools.encrypt_password(teacher_password))
    data[t.name] = t.password
    file_manager.write_json("data.json", data)
Beispiel #8
0
def register():
    # 读取文件,查看文件里是否有数据。如果文件不存在,默认是一个字典。
    data = file_manager.read_json('data.json', {})
    while True:
        teacher_name = input('请输入账号(3—6位):')
        if not 3 <= len(teacher_name) <= 6:
            print('账号不符合要求,请重新输入。')
        else:
            break

    if teacher_name in data:
        print('注册失败,该账号已经注册过了。')
    return

    while True:
        password = input('请输入密码(6—12位):')
        if not 6 <= len(password) <= 12:
            print('密码不符合要求,请重新输入。')
        else:
            break
    # 用户名和密码都创建正确以后,创建一个teacher对象。
    t = model.Teacher(teacher_name, password)
    data[t.name] = t.password
    file_manager.write_json('data.json', data)
def main(args):

    data_fn = 'plots/prec_cov_list.pk'
    fig_fn = 'plots/prec_cov'
    if os.path.exists(data_fn):
        pc_data = pickle.load(open(data_fn, 'rb'))
        plot_prec_cov(pc_data['T_list'], pc_data['prec_list'],
                      pc_data['cov_list'], fig_fn)
        return

    ## init a snapshot path
    os.makedirs(args.train.save_root, exist_ok=True)

    ## init logger
    sys.stdout = Logger(os.path.join(args.train.save_root, 'out'))

    ## print args
    print_args(args)

    ## init gpus
    if not args.cpu:
        print("##GPUs Available: ",
              len(tf.config.experimental.list_physical_devices('GPU')))
        print()

    ## init datasets
    print("## init datasets")
    ds_src = data.MultiSourceDataset(
        args.data.src,
        args.aug_params,
        batch_size=args.data.batch_size,
        val_shuffle=True,
        val_aug=True,
        domain_id=1,
        color=False if args.data.img_size[2] == 1 else True,
        size=args.data.img_size[0],
        sample_ratio=args.data.sample_ratio[0])
    assert (len(args.aug_params) == 1)  ##TODO
    ds_tar = getattr(data, args.data.tar)(
        root=os.path.join('data', args.data.tar.lower()),
        batch_size=args.data.batch_size,
        aug_list=args.aug_params[0],
        val_shuffle=True,
        val_aug=True,
        domain_id=0,
        color=False if args.data.img_size[2] == 1 else True,
        size=args.data.img_size[0],
        sample_ratio=args.data.sample_ratio[1])
    ds_dom = data.DomainDataset(
        data.MultiSourceDataset(
            args.data.src,
            args.aug_params,
            batch_size=args.data.batch_size,
            val_shuffle=True,
            val_aug=True,
            test_aug=True,  #diff
            domain_id=1,
            color=False if args.data.img_size[2] == 1 else True,
            size=args.data.img_size[0],
            sample_ratio=args.data.sample_ratio[0]),
        getattr(data, args.data.tar)(
            root=os.path.join('data', args.data.tar.lower()),
            batch_size=args.data.batch_size,
            aug_list=args.aug_params[0],
            val_shuffle=True,
            val_aug=True,
            test_aug=True,  #diff
            domain_id=0,
            color=False if args.data.img_size[2] == 1 else True,
            size=args.data.img_size[0],
            sample_ratio=args.data.sample_ratio[1]))
    print()

    ####
    ## reliable teacher learning
    ####
    mdl_st_base = getattr(model,
                          args.model.base)(num_class=args.model.n_labels,
                                           input_shape=args.model.img_size)
    #mdl_st_base = model.TempCls(mdl_st_base)
    mdl_st = model.Student(args.model,
                           mdl_st_base,
                           ds_src,
                           ds_tar,
                           ideal=args.ideal)

    mdl_tc_base = getattr(model,
                          args.model.base)(num_class=args.model.n_labels,
                                           input_shape=args.model.img_size)
    #mdl_tc_base = model.TempCls(mdl_tc_base)
    mdl_tc = model.Teacher(args.model,
                           mdl_tc_base,
                           ds_src,
                           ds_tar,
                           ideal=args.ideal)

    ## rename
    model_t = mdl_tc
    model_s = mdl_st
    model_c = model_s.model_base
    params = args.train
    params_base = args.train_base
    params_advtr = args.train_advtr
    params_iw = args.train_iw
    params_iw_cal = args.cal_iw
    params_conf = args.est_conf
    i_epoch = 1

    ## init a model
    if params.init == 'sourceonly':

        ##TODO: assume classification
        print("## init the student model with sourceonly training")
        model.set_trainable(model_c, True)
        ## init a learner
        learner = LearnerCls(params_base,
                             model_c,
                             model_name_postfix='_sourceonlyinit')
        ## train the model
        learner.train(ds_src.train, ds_src.val, ds_src.test)
        ## test the model
        learner.test(ds_src.test, ld_name='src', verbose=True)
        print()

    elif params.init == 'advtr':
        ##TODO: assume classification
        print("## init a base model with adversarial training")
        model.set_trainable(model_c, True)
        ## init a adv model
        mdl_adv = getattr(model,
                          params_advtr.model_advtr)(n_in=model_c.dim_feat)
        ## init a learner
        learner = LearnerDACls(params_advtr,
                               model.DAN(model_c, mdl_adv),
                               model_name_postfix='_advtrinit')
        ## train the model
        learner.train([ds_src.train, ds_dom.train], None, ds_tar.test)
        ## test the model
        learner.test(ds_tar.test, ld_name='tar', verbose=True)
        print()

    else:
        raise NotImplementedError

    ## init iw
    if model_t.train.model_conf.model_iw is not None:
        print("## learn IW")
        model_sd = model_t.train.model_conf.model_iw.model_sd.model
        model_sd.train()

        ## init a learner
        learner_sd = LearnerCls(params_iw,
                                model_sd,
                                model_name_postfix='_iw_epoch_%d' % (i_epoch))
        ## train the model
        learner_sd.train(ds_dom.train, ds_dom.val, ds_dom.test)
        ## test the model
        learner_sd.test(ds_dom.test, ld_name='domain', verbose=True)
        print()

        ## init a calibraton model
        model_sd_cal = model_t.train.model_conf.model_iw.model_sd
        model_sd_cal.train()

        ## init a calibrator
        calibrator_iw = CalibratorCls(params_iw_cal,
                                      model_sd_cal,
                                      model_name_postfix='_iw_cal_epoch_%d' %
                                      (i_epoch))
        ## calibrate the model
        calibrator_iw.train(ds_dom.val, ds_dom.val, ds_dom.test)
        ## test the model
        calibrator_iw.test(ds_dom.test, ld_name='domain', verbose=True)
        print()

        ## 2. learn confidence predictor
        model_base = model_t.train.model_base
        model_conf = model_t.train.model_conf
        model_iw = model_t.train.model_conf.model_iw
        model_iw_cond = model.CondIW(model_iw, model_conf, ds_src.train,
                                     ds_tar.train)
        ## init a learner
        learner = LearnerConfPred(params_conf,
                                  model_conf,
                                  model_base,
                                  model_iw_cond,
                                  model_name_postfix='_confpred_epoch_%d' %
                                  (i_epoch))
        ## train the model
        learner.train(ds_src.val, ds_src.val, ds_tar.test)
        ## test the model
        learner.test(ds_tar.test, ld_name='tar', verbose=True)
        learner.test(ds_tar.train, ld_name='tar (train)', verbose=True)
        print()

    else:
        model_base = model_t.train.model_base
        model_conf = model_t.train.model_conf

        ## init a learner
        learner = LearnerConfPred(params_conf,
                                  model_conf,
                                  model_base,
                                  None,
                                  model_name_postfix='_confpred_epoch_%d' %
                                  (i_epoch))
        ## train the model
        model_conf.T = tf.Variable(1.0 - params_conf.eps)  ##TODO
        print("T = %f" % (model_conf.T.numpy()))
        ## test the model
        learner.test(ds_tar.test, ld_name='tar', verbose=True)
        learner.test(ds_tar.train, ld_name='tar (train)', verbose=True)

    ## compute precision and coverage
    T_list, prec_list, cov_list = [], [], []
    for T in np.arange(0.0, 1.0, 0.01):
        model_conf.T = T
        prec, n_conf, n = learner.test(ds_tar.train,
                                       ld_name='tar (train)',
                                       verbose=True)
        T_list.append(T)
        prec_list.append(prec.numpy())
        cov_list.append(float(n_conf) / float(n))

        print(T_list)
        print(prec_list)
        print(cov_list)
        print()

    T_list = np.array(T_list)
    prec_list = np.array(prec_list)
    cov_list = np.array(cov_list)
    pickle.dump(
        {
            'T_list': T_list,
            'prec_list': prec_list,
            'cov_list': cov_list
        }, open(data_fn, 'wb'))
Beispiel #10
0
school2 = model.School('8002', '上海前程似锦', '浦东xxxx')
data = {}
data[school1.schoolID] = school1
data[school2.schoolID] = school2
common.pickleDump(data, school_db)
# 课程记录
course1 = model.Course('1', 'Linux', 6500.00, '8001')
course2 = model.Course('2', 'Python', 5500.00, '8001')
course3 = model.Course('3', 'Go', 4500.00, '8002')
data = {}
data[course1.courseID] = course1
data[course2.courseID] = course2
data[course3.courseID] = course3
common.pickleDump(data, course_db)
# 老师
teacher1 = model.Teacher('1', 'oldboy', 'oldboy', common.md5Encode('123456'),
                         '8001')
teacher2 = model.Teacher('2', 'alex', 'alex', common.md5Encode('123456'),
                         '8001')
teacher3 = model.Teacher('3', 'jack', 'jack', common.md5Encode('123456'),
                         '8002')
data = {}
data[teacher1.id] = teacher1
data[teacher2.id] = teacher2
data[teacher3.id] = teacher3
common.pickleDump(data, teacher_db)
# 班级信息
classes1 = model.Classes('1', '1', '1', '20周', '2017-09-01', '8001')
classes2 = model.Classes('2', '2', '2', '20周', '2017-09-27', '8001')
classes3 = model.Classes('3', '3', '3', '18周', '2017-10-18', '8002')
data = {}
data[classes1.classesID] = classes1
Beispiel #11
0
def get_results_self(args, ds_src, ds_tar, ideal=False):
    from learning import LearnerClsSelf
    from learning import TempScalingCls as CalibratorCls

    #exp_name_list = glob.glob('snapshots/m2m_self_small_?')
    exp_name_list = [
        'snapshots/m2m_self_small%s_0' % ('_ideal' if ideal else ''),
        'snapshots/m2m_self_small%s_1' % ('_ideal' if ideal else ''),
        'snapshots/m2m_self_small%s_2' % ('_ideal' if ideal else ''),
        'snapshots/m2m_self_small%s_3' % ('_ideal' if ideal else ''),
        #'snapshots/m2m_self_small_4',
        'snapshots/m2m_self_small%s_5' % ('_ideal' if ideal else ''),
        'snapshots/m2m_self_small%s_6' % ('_ideal' if ideal else ''),
    ]

    error_cls_list, error_cal_list = [], []
    for exp_name in exp_name_list:
        params = types.SimpleNamespace()
        params.save_root = exp_name
        params.find_best = False
        params.load_final = False
        print(params.save_root)

        ## init a base model
        mdl_st_base = getattr(model,
                              args.model.base)(num_class=args.data.n_labels,
                                               input_shape=args.data.img_size)
        mdl_st_base = model.TempCls(mdl_st_base)
        mdl_st = model.Student(args.model,
                               mdl_st_base,
                               ds_src,
                               ds_tar,
                               ideal=ideal)

        #mdl_tc_base = getattr(model, args.model.base)(num_class=args.model.n_labels, input_shape=args.model.img_size)
        #mdl_tc_base = model.TempCls(mdl_tc_base)
        mdl_tc_base = mdl_st_base  #shared model
        mdl_tc = model.Teacher(args.model,
                               mdl_tc_base,
                               ds_src,
                               ds_tar,
                               ideal=ideal)

        ## init a learner
        learner = LearnerClsSelf(params,
                                 None,
                                 None,
                                 mdl_st,
                                 mdl_tc,
                                 ideal=ideal)
        ## train the model
        learner.train(ds_src, None,
                      None)  ##TODO: teacher model contains the loaders
        ## test the model
        error_cls, error_cal, *_ = learner.test(ds_tar.test,
                                                ld_name=args.data.tar,
                                                verbose=True)

        error_cls_list.append(error_cls.numpy())
        error_cal_list.append(error_cal)

    return np.array(error_cls_list), np.array(error_cal_list)