def loadSentimentValues(catalog, sentimentvaluesfile): sentimentvaluesfile = cf.data_dir + sentimentvaluesfile input_file = csv.DictReader(open(sentimentvaluesfile, encoding="utf-8"), delimiter=",") for hashtag in input_file: model.addHashtag(catalog, hashtag) return catalog
def loadHashtags(analyzer): """ Carga las etiquetas del archivo csv. """ tagsfile = cf.data_dir + 'subsamples-small/user_track_hashtag_timestamp-small.csv' input_file = csv.DictReader(open(tagsfile, encoding='utf-8')) for event in input_file: model.addHashtag(analyzer, event)
def loadSentimentValues(catalog): file = cf.data_dir + sentimentvalues_file input_file = csv.DictReader(open(file, encoding='utf-8')) for hashtag_leido in input_file: hashtag_agregar = {'hashtag': hashtag_leido['hashtag'].lower()} if hashtag_leido['vader_avg'] == '': hashtag_agregar['vader'] = -1 else: hashtag_agregar['vader'] = float(hashtag_leido['vader_avg']) model.addHashtag(catalog, hashtag_agregar)
def loadSentimentValues(analyzer): sentimentFile = cf.data_dir + 'sentiment_values.csv' input_file = csv.DictReader(open(sentimentFile, encoding="utf-8"), delimiter=',') for line in input_file: filtered = { 'hashtag': (line['hashtag'].lower()).replace(' ', ''), 'vader': line['vader_avg'] } model.addHashtag(analyzer, filtered) return analyzer
def loadHashtags(catalog): """ Carga los hashtags del archivo. Por cada hashtag se toma el único dato necesario: el vader promedio. """ videosfile = cf.data_dir + 'sentiment_values.csv' input_file = csv.DictReader(open(videosfile, encoding='utf-8')) for hashtag in input_file: try: cada_hashtag = { "hashtag": hashtag["hashtag"].lower(), "vader_avg": float(hashtag["vader_avg"]) } model.addHashtag(catalog, cada_hashtag) except: pass
def loadData(catalog): delta_time = -1.0 delta_memory = -1.0 tracemalloc.start() start_time = getTime() start_memory = getMemory() songfile1 = cf.data_dir + 'Subsamples/user_track_hashtag_timestamp/user_track_hashtag_timestamp-small.csv' input_file1 = csv.DictReader(open(songfile1, encoding='utf-8')) songfile2 = cf.data_dir + 'Subsamples/context_content_features/context_content_features-small.csv' input_file2 = csv.DictReader(open(songfile2, encoding='utf-8')) songfile3 = cf.data_dir + 'Subsamples/sentiment_values/sentiment_values1.csv' input_file3 = csv.DictReader(open(songfile3, encoding='utf-8')) model.createCharact(catalog) model.createCharactSong(catalog) for dicc in input_file3: model.addHashtag(catalog['hashtags'], dicc) for song in input_file1: model.addTrack(catalog['tracksong'], song) lstevent = lt.newList('ARRAY_LIST') pos = 0 for song in input_file2: issong = model.songByUserId(catalog, song) if issong is not None: pos += 1 if (pos in range(1, 6)) or (pos in range(63229, 63234)): lt.addLast(lstevent, model.printEvent(issong)) model.addSongbyCharact(catalog, issong) model.addArtist(catalog['artists'], issong) model.addTrackHashtag(catalog['trackhashtag'], issong) model.newAddSong(catalog) model.addSong(catalog) addGenre(catalog, None) stop_memory = getMemory() stop_time = getTime() tracemalloc.stop() delta_time = stop_time - start_time delta_memory = deltaMemory(start_memory, stop_memory) return (lstevent, (delta_time, delta_memory))
def loadData(analyzer, hashtag, sentiments, context): """ Carga los datos de los archivos CSV en el modelo """ hashtagsfile = cf.data_dir + hashtag hashtag_file = csv.DictReader(open(hashtagsfile, encoding="utf-8"), delimiter=",") contextfile = cf.data_dir + context context_file = csv.DictReader(open(contextfile, encoding="utf-8"), delimiter=",") sentimentsfile = cf.data_dir + sentiments sentiments_file = csv.DictReader(open(sentimentsfile, encoding="utf-8"), delimiter=",") for event in context_file: model.addEvent(analyzer, event) posEvent = 1 for hastag in hashtag_file: posEvent = model.addHashtag(analyzer, hastag, posEvent) model.crearArboles(analyzer) for sentiment in sentiments_file: model.addSentiment(analyzer, sentiment) return analyzer
def loadHashtags(catalog): hashtagsfile = cf.data_dir + 'sentiment_values.csv' input_file = csv.DictReader(open(hashtagsfile, encoding='utf-8')) for hashtag in input_file: model.addHashtag(catalog, hashtag)
def loadHashtags(cat, hashtags): hfile = cf.data_dir + "subsamples-small" + "\\" + hashtags input_file = csv.DictReader(open(hfile, encoding="utf-8"), delimiter=",") for rep in input_file: model.addHashtag(cat, rep) print("Se cargó el archivo de Track-Hashtags")