Beispiel #1
0
def get_mask_from_interval(times,start,end):
    """
        give start and end time as epoch or iso string and a time vector, return a mask which points are inside
    """

    start= date2secs(start)
    end = date2secs(end)
    left = numpy.searchsorted(times,start) #this is the first value > start
    right = numpy.searchsorted(times,end)  #this is the first value > end
    mask = numpy.full(len(times),False)
    mask[left:right]=True
    return mask
Beispiel #2
0
def create_test_model_large(myModel, noVars=100, blobs=10, lines=1000):
    """
        creating a large model. we insert blobs with each containing lines
        !! we totally enter blobs*lines lines to the table
        Args:
            vars: the number of vars to be created
            blobs: the number of blobs to be inserted
            lines: the number of lines to be inserted with EACH blob
        Returns:
            the model
    """
    t = Timer()
    #make a table and put in the variables
    print("make a table with ", noVars, " rows and ", (blobs * lines), " rows")
    vars = []
    for var in range(noVars):
        variableName = "myvariable" + str(var)
        vars.append(variableName)
    modeltemplates.create_table(myModel, variableNames=vars)

    #prepare a row as dataBlob
    rowEntry = {}
    for leaf in myModel.get_leaves('root.newTable.columns'):
        rowEntry[leaf["browsePath"]] = []

    #remove the time field and add the __time
    timeBrowsePath = myModel.get_leaves(
        'root.newTable.timeField')[0]['browsePath']
    rowEntry.pop(timeBrowsePath)
    #rowEntry['__time']=[]
    print(rowEntry)

    #put in some data
    startTime = datetime.datetime.now(tz=pytz.utc)
    deltaseconds = 0
    tt = Timer()
    t.start()
    for blobNo in range(blobs):
        print("blob", blobNo, "of", blobs)
        blob = rowEntry.copy()
        for key in blob:
            blob[key] = list(range(deltaseconds, deltaseconds + lines))
        #for the time it's special
        blob['__time'] = []
        for d in range(lines):
            blob['__time'].append(
                model.date2secs(startTime +
                                datetime.timedelta(seconds=deltaseconds + d)))
        deltaseconds += lines
        print("deltasec", deltaseconds)
        tt.remaining(blobNo, blobs)
        t.start()
        myModel.ts_table_add_blob(blob)
        t.stop("entered" + str(lines) + "lines")

    return myModel
Beispiel #3
0
def motif_jumper(functionNode):

    logger = functionNode.get_logger()
    logger.info("==>>>> in motif_jumper " + functionNode.get_browse_path())

    minerNode = functionNode.get_child("miner").get_targets()[0]
    widgetNode = minerNode.get_child("widget").get_targets()[0]

    dates = minerNode.get_child("peaks").get_value()
    if type(dates) is not list:
        dates = []
    currentIndex = functionNode.get_child("jumpPos").get_value()
    inc = functionNode.get_child("jumpInc").get_value()

    nextIndex = currentIndex+inc
    if nextIndex>=len(dates):
        nextIndex=0
    functionNode.get_child("jumpPos").set_value(nextIndex)

    logger.debug(f"jump to index {nextIndex}  : {dates[nextIndex]}")

    if len(dates):
        motif = minerNode.get_child("motif").get_targets()[0]
        motifStart = motif.get_child("startTime").get_value()
        motifEnd = motif.get_child("endTime").get_value()

        currentViewStart = widgetNode.get_child("startTime").get_value()
        currentViewEnd = widgetNode.get_child("endTime").get_value()
        currentViewWidth = date2secs(currentViewEnd)- date2secs(currentViewStart)

        windowStart = date2secs(dates[nextIndex])-currentViewWidth/2
        windowEnd = date2secs(dates[nextIndex])+currentViewWidth/2



        widgetNode.get_child("startTime").set_value(epochToIsoString(windowStart,zone=timezone('Europe/Berlin')))
        widgetNode.get_child("endTime").set_value(epochToIsoString(windowEnd, zone=timezone('Europe/Berlin')))

    return True
Beispiel #4
0
def motif_jumper(functionNode):
    """
        jump from one result the the next/prev
        if the increase/decrese is zero, we jump to the motif instead
    """

    logger = functionNode.get_logger()
    logger.info("==>>>> in motif_jumper " + functionNode.get_browse_path())

    minerNode = functionNode.get_child("miner").get_targets()[0]
    widgetNode = minerNode.get_child("widget").get_targets()[0]

    dates = minerNode.get_child("peaks").get_value()
    if type(dates) is not list:
        dates = []
    currentIndex = functionNode.get_child("jumpPos").get_value()
    inc = functionNode.get_child("jumpInc").get_value()

    if inc != 0:
        nextIndex = currentIndex + inc
        if nextIndex >= len(dates):
            nextIndex = 0
        functionNode.get_child("jumpPos").set_value(nextIndex)

        logger.debug(f"jump to index {nextIndex}  : {dates[nextIndex]}")

    motif = minerNode.get_child("motif").get_targets()[0]
    motifStart = motif.get_child("startTime").get_value()
    motifEnd = motif.get_child("endTime").get_value()
    motifWidth = date2secs(motifEnd) - date2secs(motifStart)
    currentViewStart = widgetNode.get_child("startTime").get_value()
    currentViewEnd = widgetNode.get_child("endTime").get_value()
    currentViewWidth = date2secs(currentViewEnd) - date2secs(currentViewStart)

    if inc == 0:
        center = date2secs(motifStart) + 0.5 * (motifWidth)
        windowStart = center - currentViewWidth / 2
        windowEnd = center + currentViewWidth / 2
        widgetNode.get_child("startTime").set_value(
            epochToIsoString(windowStart, zone=timezone('Europe/Berlin')))
        widgetNode.get_child("endTime").set_value(
            epochToIsoString(windowEnd, zone=timezone('Europe/Berlin')))

    else:
        if len(dates):
            center = date2secs(dates[nextIndex]) - 0.5 * motifWidth
            windowStart = center - currentViewWidth / 2
            windowEnd = center + currentViewWidth / 2
            widgetNode.get_child("startTime").set_value(
                epochToIsoString(windowStart, zone=timezone('Europe/Berlin')))
            widgetNode.get_child("endTime").set_value(
                epochToIsoString(windowEnd, zone=timezone('Europe/Berlin')))

    return True
Beispiel #5
0
def write_test(rate, port=6001):

    while True:
        time.sleep(float(rate) / 1000)
        now = datetime.datetime.now(pytz.timezone("Europe/Berlin"))
        epoch = date2secs(now)
        blob = make_blob(epoch)
        body = [blob]
        try:
            startTime = datetime.datetime.now()
            host = "http://127.0.0.1:" + str(port) + "/_appendRow"
            r = requests.post(host, data=json.dumps(body), timeout=5)
            diff = (datetime.datetime.now() - startTime).total_seconds()
            print(
                f"sent {json.dumps(body)} with result {r.status_code} difftime{diff}"
            )
        except Exception as ex:
            print(f"sent {json.dumps(body)} with exception {ex}")
Beispiel #6
0
def show_timeseries_results(functionNode):
    results = functionNode.get_child("results").get_value()
    motifNode = functionNode.get_child("motif").get_target()
    startTime = motifNode.get_child("startTime").get_value()
    endTime = motifNode.get_child("endTime").get_value()
    varNode = motifNode.get_child("variable").get_target()
    motifTimeSeries = varNode.get_time_series(start=startTime, end=endTime)
    varName = varNode.get_property("name")
    for child in functionNode.get_children():
        if child.get_name().endswith("_expected"):
            if not child.get_name().startswith(varName):
                child.delete()
    resultNode = functionNode.create_child(name=varName+'_expected', type="timeseries")
    resultNode.set_time_series([],[])
    cnt = 0
    for result in results:
        resultTimes = motifTimeSeries['__time']+result['epochStart']-date2secs(startTime)  # time + offset
        resultValues = (motifTimeSeries['values']).copy()
        lastIdx = len(resultTimes)-1
        ### for each result
        excerptFullTs = varNode.get_time_series(start=result['startTime'], end=result['endTime'])
        excerptFullTsValues = (excerptFullTs['values'])[:-1]
#        stumpy_print_labeled_2_axis(resultValues, excerptFullTsValues, cnt, str(cnt), varName)
        #resultValuesNorm = mixed_norm_cross(resultValues, excerptFullTsValues)
        resultValuesNorm = std_norm(resultValues, excerptFullTsValues) #kna
        resultValuesNormNan = resultValuesNorm.copy()
        resultValuesNormNan = numpy.insert(resultValuesNormNan,0, numpy.nan)
        resultValuesNormNan = numpy.append(resultValuesNormNan, numpy.nan)
        resultTimesNan = resultTimes.copy()
        resultTimesNan = numpy.insert(resultTimesNan, 0, resultTimes[0]+resultTimes[0]-resultTimes[1])
        resultTimesNan = numpy.append(resultTimesNan, resultTimes[lastIdx]+resultTimes[lastIdx]-resultTimes[lastIdx-1])
        cnt = cnt + 1
        #to avoid overlaps with old results (which can happen if results actually overlap), delete first
        resultNode.delete_time_series(start = resultTimesNan[0],end=resultTimesNan[-1]) #kna
        resultNode.insert_time_series(values=resultValuesNormNan, times=resultTimesNan)
    widgetNode = functionNode.get_child("widget").get_target()
    widgetNode.get_child("selectedVariables").add_references(resultNode,allowDuplicates=False)
Beispiel #7
0
def import_run(iN):

    _helper_log(f"IMPORT STARTED")
    timeStartImport = dt.datetime.now()

    # --- define vars
    importerNode = iN.get_parent()

    # --- [vars] define
    tablename = iN.get_child("tablename").get_value()
    _helper_log(f"tablename: {tablename}")

    #  # --- create needed nodes
    importerNode.create_child('imports', type="folder")
    importsNode = importerNode.get_child("imports")

    # TODO importsNode.get_child(tablename).delete()
    importsNode.create_child(tablename, type="table")
    table = importsNode.get_child(tablename)
    table.create_child('variables', type="folder")
    table.create_child('columns', type="referencer")
    table.create_child('metadata', type="const")
    vars = table.get_child("variables")
    cols = table.get_child("columns")

    # --- read metadata and fields
    metadataRaw = iN.get_child("metadata").get_value()
    metadata = json.loads(metadataRaw)
    table.get_child("metadata").set_value(metadata)
    fields = metadata["fields"] 
    timefield = int(metadata["timefield"]) - 1
    filename = metadata["filename"]
    headerexists = metadata["headerexists"]
    filepath = 'upload/' + filename 

    # --- load csv data
    # * https://www.shanelynn.ie/python-pandas-read_csv-load-data-from-csv-files/
    # * [ ] optimize speed? https://stackoverflow.com/questions/16476924/how-to-iterate-over-rows-in-a-dataframe-in-pandas
    # * [ ] vectorize a loop https://stackoverflow.com/questions/27575854/vectorizing-a-function-in-pandas
    df = pd.read_csv(filepath)

    # --- define time list
    # * select rows and columns from dataframe https://thispointer.com/select-rows-columns-by-name-or-index-in-dataframe-using-loc-iloc-python-pandas/
    timeList = df.iloc[:,timefield].to_list()
    epochs = [date2secs(time) for time in timeList]
    print(epochs) 

    # --- import data, set vars and columns
    data = {}
    for field in fields:
        fieldno = int(field["no"]) - 1
        fieldname = field["val"]
        fieldvar = vars.create_child(fieldname, type="timeseries")
        if timefield != fieldno:
            data[fieldname] = df.iloc[ :, fieldno].to_list()
            fieldvar.set_time_series(values=data[fieldname],times=epochs)
        cols.add_references(fieldvar)
        _helper_log(f"val: {fieldname}")
        print(fieldvar) 

    _helper_log(f"IMPORT DONE (seconds: {(dt.datetime.now()-timeStartImport).seconds})")
    return True
Beispiel #8
0
def reader(functionNode):
    logger = functionNode.get_logger()
    logger.info("==>>>> in raw_reader_2  " + functionNode.get_browse_path())

    full_path = os.path.realpath(__file__)
    path, filename = os.path.split(full_path)
    folder = path + r'\..\upload'
    m = functionNode.get_model()

    signalNode = functionNode.get_child("control").get_child("signal")
    signalNode.set_value("nosignal")

    varFolder = functionNode.get_child("variablesFolder").get_targets(
    )[0]  # we expect a direct link to the folder where to place the new variables
    fileNameMatch = functionNode.get_child("fileFilter").get_value()
    progressNode = functionNode.get_child("control").get_child("progress")
    localtz = timezone('Europe/Berlin')

    fileNames = os.listdir(folder)
    #fileNames = [r'20190805_TempSenMachine_1.dat',r'20190805_TempSenMachine_3.dat',r'20190805_TempSenMachine_2.dat']

    for idx, fileName in enumerate(fileNames):
        progressNode.set_value(round(idx / len(fileNames), 2))
        if fileNameMatch not in fileName:
            logger.debug(f"skip file {fileName}, not match")
            continue  # this file will be ignored
        if fileName in functionNode.get_child("processedFiles").get_value():
            logger.debug(f"skip file {fileName}, already done ")
            continue
        try:
            # now open the file, read it in
            fullFileName = folder + "\\" + fileName
            logger.info(f"processing {fullFileName}")
            data = pandas.read_csv(fullFileName, sep=",")
            data.rename(columns_renamer, axis="columns", inplace=True)

            #first the times

            cols = list(data.columns)
            times = []
            for dateString in data[cols[0]]:
                mydate = dateutil.parser.parse(dateString, dayfirst=True)
                try:
                    mydateAware = localtz.localize(mydate)
                except:
                    mydateAware = mydate  # is already localized

                epoch = model.date2secs(mydateAware)
                times.append(epoch)

            drops = []
            for col in cols[1:]:
                try:
                    values = numpy.asarray(data[col], dtype=numpy.float64)
                except:
                    print(f"could not convert column {col}")
                    drops.append(col)
                    continue
                # print(values)
                values[numpy.isfinite(values) ==
                       False] = numpy.nan  # set all not finites to +numpy.nan
                data[col] = values
            data = data.drop(columns=drops)
            cols = list(data.columns)

            # in the file, the variables only have a single, unique name, now we need to find the matches in the table
            # so we will iterate over all columns of the table and try to match the sensor names of the file to the variables
            # by looking at the actual name of the node, we don't care where the nodes reside, just the name of the nodes must match

            #build a look up to speed up things
            existingColumns = {}
            for columnNode in functionNode.get_child(
                    "variablesFolder").get_leaves():
                existingColumns[columnNode.get_name()] = columnNode

            #now insert
            for col in cols[1:]:
                if signalNode.get_value() == "stop":
                    raise Exception("user stop")
                if col in existingColumns:
                    mynode = existingColumns[col]
                else:
                    mynode = varFolder.create_child(col,
                                                    properties={
                                                        "tsAllocSize": 100000,
                                                        "type": "timeseries"
                                                    })

                m.disable_observers()
                res = mynode.insert_time_series(times=times, values=data[col])
                m.enable_observers()
                logger.debug(
                    f"inserting {len(data[col])} on node {mynode.get_browse_path()}, result = {res}"
                )
        except Exception as ex:
            print(f"can't import file {fileName}, {ex}")
            if signalNode.get_value() == "stop":
                break
            continue

    #remember  these files done
    doneFilesList = functionNode.get_child("processedFiles").get_value()
    doneFilesList.extend(fileNames)
    functionNode.get_child("processedFiles").set_value(
        doneFilesList)  # remember the files

    return True
Beispiel #9
0
def dates():
    s = "2018-1-1T08:15:00+02:00"
    s2 = "2018-1-1T06:15:00+00:00"
    print(model.date2secs(s),model.date2secs(s2))
Beispiel #10
0
def pps_miner(functionNode):

    logger = functionNode.get_logger()
    logger.info("==>>>> in pps_miner " + functionNode.get_browse_path())

    myWidget = functionNode.get_child("widget").get_target()
    myModel = functionNode.get_model()
    motifs = myWidget.get_child("hasAnnotation").get_child(
        "selectedAnnotations").get_leaves()
    annotations = functionNode.get_child("annotations")
    progressNode = functionNode.get_child("control").get_child("progress")
    progressNode.set_value(0)
    """
        preparation:
            - find the current widget, take the current selected selection for my motif
            - if not available
            - connect the result to the table
    """

    motif = None
    if motifs:
        motif = motifs[0]
        functionNode.get_child("motif").add_references(
            motif, deleteAll=True)  # take this annotation
    else:
        #there is currently no selection, we take the motif from last time if we have one
        motifs = functionNode.get_child("motif").get_targets()
        if motifs:
            motif = motifs[0]
    if not motif:
        logger.error("have no motif")
        return False

    # prepare the result: delete previous annotations
    functionNode.get_child("peaks").set_value([])
    try:
        myModel.disable_observers()
        annos = annotations.get_children()
        if annos:
            for anno in annos:
                anno.delete()
    except:
        myModel.enable_observers()
        return False

    myModel.enable_observers()
    myModel.notify_observers(
        annotations.get_id(),
        "children")  # trigger the widgets to delete the annotations

    ####################################
    ## get the settings
    ####################################
    preFilter = functionNode.get_child("preFilter").get_value()
    postFilter = functionNode.get_child("postFilter").get_value()
    subtractPolynomOrder = functionNode.get_child(
        "subtractPolynomOrder").get_value()
    differentiate = functionNode.get_child("differentiate").get_value()
    timeRanges = functionNode.get_child("timeRanges").get_value()
    timeRanges = {int(k): v for k, v in timeRanges.items()}
    valueRanges = functionNode.get_child("valueRanges").get_value()
    valueRanges = {int(k): v for k, v in valueRanges.items()}
    typeFilter = functionNode.get_child("typeFilter").get_value()

    ####################################
    #get the motif
    ####################################
    motifStartTime = date2secs(motif.get_child("startTime").get_value())
    motifEndTime = date2secs(motif.get_child("endTime").get_value())
    motifVariable = motif.get_child("variable").get_targets()[0]

    #motifStartTime = motifStartTime+0.2*(motifEndTime-motifStartTime)
    #print(f"{vars[varName].get_name()},{motifStartTime}")
    motif = motifVariable.get_time_series(start=motifStartTime,
                                          end=motifEndTime)
    #print(motif)
    motifX = motif["__time"]
    motifY0 = motif["values"]
    motifY1 = mnh.pps_prep(motifY0,
                           filter=preFilter,
                           poly=subtractPolynomOrder,
                           diff=differentiate,
                           postFilter=postFilter)
    motifPPS = mnh.prominent_points(motifY1, motifX)

    ####################################
    #get the time series
    ####################################
    # make the time series data and pps
    series = motifVariable.get_time_series()  # the full time
    x = series["__time"]
    t0 = series["__time"][0]
    x = x - t0  # start time from 0
    y0 = series["values"]
    y1 = mnh.pps_prep(y0,
                      filter=preFilter,
                      poly=subtractPolynomOrder,
                      diff=differentiate,
                      postFilter=postFilter)
    pps = mnh.prominent_points(y1, x)

    ####################################
    # MINING
    ####################################
    progressNode.set_value(0.3)
    matches = mnh.pps_mining(motifPPS['pps'],
                             pps['pps'],
                             timeRanges=timeRanges,
                             valueRanges=valueRanges,
                             typeFilter=typeFilter,
                             motifStartIndex=0,
                             debug=False)
    print(
        f"{len(matches)} matches: {[secs2date(t0+m['time']).isoformat() for m in matches]}"
    )

    ####################################
    # create result Annotations
    ####################################

    annoTimeLen = motifEndTime - motifStartTime
    newAnnotations = []
    for m in matches:
        anno = {
            "type": "time",
            "startTime": "",
            "endTime": "",
            "tags": ["pattern_match"]
        }
        anno["startTime"] = epochToIsoString(m["time"] + t0 - annoTimeLen,
                                             zone=timezone('Europe/Berlin'))
        anno["endTime"] = epochToIsoString(m["time"] + t0,
                                           zone=timezone('Europe/Berlin'))
        newAnnotations.append(anno)

    #remove trivial matches (inside a guard area around the motif)
    guard = (motifEndTime - motifStartTime) / 2
    newAnnotations = [
        anno for anno in newAnnotations
        if date2secs(anno["startTime"]) < (motifStartTime - guard)
        or date2secs(anno["startTime"]) > motifEndTime + guard
    ]

    progressNode.set_value(0.6)
    myModel.disable_observers()
    for anno in newAnnotations:
        # create the annotation in the model
        newAnno = annotations.create_child(type="annotation")
        for k, v in anno.items():
            newAnno.create_child(properties={
                "name": k,
                "value": v,
                "type": "const"
            })
    myModel.enable_observers()
    myModel.notify_observers(annotations.get_id(), "children")

    #also write the peaks
    peaks = [
        epochToIsoString(m["time"] + t0, zone=timezone('Europe/Berlin'))
        for m in matches
    ]
    functionNode.get_child("peaks").set_value(peaks)
    progressNode.set_value(1)

    return True
Beispiel #11
0
def motif_miner(functionNode):

    logger = functionNode.get_logger()
    logger.info("==>>>> in motif_miner " + functionNode.get_browse_path())
    progressNode = functionNode.get_child("control").get_child("progress")
    progressNode.set_value(0)
    tableNode = functionNode.get_child("table").get_targets()[0]
    timeNode = tableNode.get_child("timeField").get_targets()[0]
    subSamplingFactor = functionNode.get_child("subSamplingFactor").get_value()
    sigmaNoise = functionNode.get_child("addNoise").get_value()
    annotations = functionNode.get_child("annotations")
    myModel = functionNode.get_model()
    signalNode = functionNode.get_child("control").get_child("signal")

    polynomPre = functionNode.get_child("subtractPolynomOrder").get_value()
    if polynomPre != "none":
        polynomPre = "subtract_poly_" + str(int(polynomPre))
    logger.debug(f"polynome pre is {polynomPre}")
    algo = functionNode.get_child("algorithm").get_value()
    """
        preparation:
            - find the current widget, take the current selected selection for my motif
            - if not available
            - connect the result to the table
    """

    myWidget = functionNode.get_child("widget").get_targets()[0]
    motifs = myWidget.get_child("hasAnnotation").get_child(
        "selectedAnnotations").get_leaves()
    motif = None
    if motifs:
        motif = motifs[0]
        functionNode.get_child("motif").add_references(
            motif, deleteAll=True)  # take this annotation
    else:
        #there is currently no selection, we take the motif from last time if we have one
        motifs = functionNode.get_child("motif").get_targets()
        if motifs:
            motif = motifs[0]
    if not motif:
        logger.error("have no motif")
        return False

    # prepare the result: delete previous scores and annotations
    scoreNode = functionNode.get_child("score")
    functionNode.get_child("peaks").set_value([])
    scoreNode.connect_to_table(
        tableNode
    )  # this will make it part of the table and write it all to numpy.inf
    try:
        myModel.disable_observers()
        annos = annotations.get_children()
        if annos:
            for anno in annos:
                anno.delete()
    except:
        myModel.enable_observers()
        return False

    myModel.enable_observers()
    myModel.notify_observers(
        annotations.get_id(),
        "children")  # trigger the widgets to delete the annotations

    #prepare the motif
    motifVariable = motif.get_child("variable").get_targets()[0]
    start = motif.get_child("startTime").get_value()
    end = motif.get_child("endTime").get_value()
    motifEpochStart = date2secs(start)
    motifEpochEnd = date2secs(end)
    logger.debug(
        f"motif: {motifVariable.get_browse_path()},  {start} .. {end} ")
    timeIndices = timeNode.get_time_indices(start, end)
    logger.debug(f" motif len {len(timeIndices)}")
    y = motifVariable.get_value().copy()  # y holds the full data
    y = gaussian_filter(y, sigma=2)  # smoothen it
    #normalize y
    #y = normalize_range(y,0,1)              #normalize
    t = timeIndices[::subSamplingFactor]  #downsampling of the data
    yMotif = y[t].copy()  # yMotif holds the motif data downsampled
    noise = np.random.normal(0, sigmaNoise, len(yMotif))
    yMotif = yMotif + noise  # adds a small amount of noise to the template in order to not create pathological results

    # prepare the result
    motifTimeLen = (timeIndices[-1] - timeIndices[0])
    scoreIndices = numpy.arange(timeIndices[0] - 1 * motifTimeLen,
                                timeIndices[-1] + 200 * motifTimeLen)
    scoreTimes = scoreIndices[::subSamplingFactor]

    #y = y[::subSamplingFactor] # full data
    #y=y[scoreTimes]

    #we will now go through the data and each 2 seconds update the results with the new results
    runningR = True
    runningL = True
    blockSize = 10  # times the motif len
    blockStartR = timeIndices[
        0]  # start is the motif start time for the serach to the right
    blockStartL = timeIndices[0] - (
        blockSize - 1
    ) * motifTimeLen  # start is the motif start time for the search to the left

    signalNode.set_value("none")

    while runningR or runningL:
        percentR = float(
            (blockStartR - timeIndices[0]) / (len(t) - blockStartR))
        percentL = float(timeIndices[0] - blockStartL) / float(timeIndices[0])
        progressNode.set_value(max(percentL, percentR))

        logger.debug(f"processing block {blockStartR} {len(y)}")

        oldResult = scoreNode.get_value().copy()
        resultVector = numpy.full(len(oldResult),
                                  numpy.inf,
                                  dtype=numpy.float64)

        if runningR:
            #search to the right
            scoreIndices = numpy.arange(blockStartR,
                                        blockStartR + blockSize * motifTimeLen)
            scoreTimes = scoreIndices[::subSamplingFactor]
            yWindow = y[scoreTimes]
            result = motif_mining(template=yMotif,
                                  y=yWindow,
                                  preprocesssing_method=polynomPre,
                                  sim_method=algo,
                                  normalize=False,
                                  progressNode=progressNode)

            #resultVector = scoreNode.get_value()
            indices = numpy.asarray(
                list(range(0, len(resultVector), subSamplingFactor)))

            if 0:  # for full
                for i in range(subSamplingFactor):
                    resultVector[indices + i] = result
            else:
                for i in range(subSamplingFactor):
                    resultVector[scoreTimes + i] = result
            #scoreNode.set_value(resultVector)

            blockStartR += (blockSize - 1) * motifTimeLen
            if blockStartR > (len(y) - (blockSize * motifTimeLen)):
                runningR = False

        if runningL:
            #search to the right
            scoreIndices = numpy.arange(blockStartL,
                                        blockStartL + blockSize * motifTimeLen)
            scoreTimes = scoreIndices[::subSamplingFactor]
            yWindow = y[scoreTimes]
            result = motif_mining(template=yMotif,
                                  y=yWindow,
                                  preprocesssing_method=polynomPre,
                                  sim_method=algo,
                                  normalize=False,
                                  progressNode=progressNode)

            #resultVector = scoreNode.get_value()
            indices = numpy.asarray(
                list(range(0, len(resultVector), subSamplingFactor)))

            if 0:  # for full
                for i in range(subSamplingFactor):
                    resultVector[indices + i] = result
            else:
                for i in range(subSamplingFactor):
                    resultVector[scoreTimes + i] = result
            #scoreNode.set_value(resultVector)

            blockStartL -= (blockSize - 1) * motifTimeLen
            if blockStartL < 0:
                runningL = False

        transferIndices = numpy.isfinite(
            resultVector)  # set the inf to 0 where we have new results
        oldResult[transferIndices] = resultVector[transferIndices]
        scoreNode.set_value(oldResult)

        if signalNode.get_value() == "stop":
            runningR = False
            runningL = False

        generate_peaks(resultVector, functionNode, logger, timeNode,
                       (len(yMotif) * subSamplingFactor), motifEpochStart,
                       motifEpochEnd)
        time.sleep(0.8)  # this makes a yield to other threads

    #generate_peaks(resultVector,functionNode,logger,timeNode,(len(yMotif) * subSamplingFactor),motifEpochStart,motifEpochEnd)

    return True
def logistic_regression2(functionNode):
    """
     new version of the logistic regression:
     we are following the approach of a n-class classification where n-1 classes are given in the categoryMap starting at number 1,
     all data inside the regions (we support only one here) will be treated as category 0
    """
    scaling = True
    algorithm = "rf"  # of rf, lg

    logger = functionNode.get_logger()
    logger.info("==>>>> in logisticregression 2: " +
                functionNode.get_browse_path())

    # now get the input and outputs
    inputNodes = functionNode.get_child("input").get_leaves()
    for node in inputNodes:
        logger.debug("input node" + node.get_browse_path())

    outputNode = functionNode.get_child("output").get_leaves()[0]
    logger.debug("outputnode " + outputNode.get_browse_path())

    annotations = functionNode.get_child("annotations").get_leaves()
    logger.debug("no annotations: " + str(len(annotations)))

    timeNode = inputNodes[0].get_table_time_node(
    )  # if the node is a column belonging to a time series table, we now get the time node of that table
    logger.debug("the time node is " + timeNode.get_browse_path())

    tableNode = timeNode.get_table_node()
    tableLen = tableNode.get_table_len()
    """
        now prepare the data for processing:
        
        learning:
        find all annotations with tag "learn"
        inside them take all annotations that are tagged with a tag inside the tagsMap/categoryMap, the target values start at 1
        use them for learning, where all areas that are not tagged or tagged with something not in the category Map get the tagvalue 0
        
        for scoring, we use the annoations with "score" tagged
    """

    # get the annotation map
    tagsMap = functionNode.get_child(
        "categoryMap").get_value()  # pick the category mapping from the model

    learnIndices = []
    learnTimes = []
    scoreIndices = []
    scoreTimes = []
    # see if we have a "region" annotation (we only support one)
    for anno in annotations:
        tag = anno.get_child('tags').get_value()[0]
        if tag in ["learn", "score"]:
            regionStartDate = anno.get_child("startTime").get_value()
            regionEndDate = anno.get_child("endTime").get_value()
            logger.debug(tag + "region: " + str(regionStartDate) + " " +
                         str(regionEndDate))
            regionStartTime = date2secs(regionStartDate)
            regionEndTime = date2secs(regionEndDate)
            #regionIndices = timeNode.get_time_indices(regionStartTime, regionEndTime)
            if tag == "learn":
                learnTimes.append({
                    "start": regionStartTime,
                    "end": regionEndTime
                })
                learnIndices.extend(
                    timeNode.get_time_indices(regionStartTime, regionEndTime))
            elif tag == "score":
                scoreTimes.append({
                    "start": regionStartTime,
                    "end": regionEndTime
                })
                scoreIndices.extend(
                    timeNode.get_time_indices(regionStartTime, regionEndTime))

    # now prepare the training target values based on the given annotations,
    # the regions where no anno is given are set as 0
    # for simplicity we start with a training array of the full size of the table, later, we cut it
    # for the region

    training = numpy.full(tableLen, 0)  # set zero to all values as a padding
    groundTruth = numpy.full(tableLen,
                             0)  #set zero, used for the confusion matrix

    allAnnoIndices = [
    ]  # all indices that are inside a learn region and inside an annotation region of interest

    #indices = []  # a list of indices which give the points in time that were labelled
    #training = []  # the training values are the tags from the annoations translated via the tagsmap
    for anno in annotations:
        startTime = date2secs(anno.get_child("startTime").get_value())
        endTime = date2secs(anno.get_child("endTime").get_value())
        tag = anno.get_child('tags').get_value()[0]
        if tag in tagsMap:
            #we take annotations that have a tag which was selected in the tagsMap
            #now check if it is inside any learn area
            for region in learnTimes:
                if startTime >= region["start"] and endTime <= region["end"]:
                    #the annotation is inside this region
                    annoIndices = list(
                        timeNode.get_time_indices(startTime, endTime)
                    )  # this gives us the indices in the table between start and end time
                    allAnnoIndices.extend(annoIndices)
                    #now set the values with fancy indexing
                    training[annoIndices] = tagsMap[tag]
                    logger.debug("set training target %s as %i", tag,
                                 tagsMap[tag])
            for region in scoreTimes:
                if startTime >= region["start"] and endTime <= region["end"]:
                    annoIndices = list(
                        timeNode.get_time_indices(startTime, endTime))
                    groundTruth[annoIndices] = tagsMap[tag]

    #now cut the region if we have one via fancy indexing
    #training = training[learnIndices]
    training = training[allAnnoIndices]

    trainingData = []
    # now grab the values from the columns
    finiteNodes = []

    for node in inputNodes:
        values = numpy.asarray(node.get_value())
        values = values[allAnnoIndices]

        if numpy.isfinite(values).all():
            trainingData.append(list(values))
            finiteNodes.append(node)
            logger.debug("has good finite values" + node.get_name())
        else:
            logger.warning("some infinite values in " + node.get_name())
            #now pad with zero
            values[False == numpy.isfinite(values)] = 0
            trainingData.append(list(values))
            finiteNodes.append(node)
    table = numpy.stack(trainingData, axis=0)

    # now fit the model
    model = LogisticRegression()
    #model =  RandomForestClassifier(n_estimators=50,max_features=10)

    scaler = StandardScaler()
    scaler.fit(table.T)
    if scaling:
        data = scaler.transform(table.T)
    else:
        data = table.T
    model.fit(data, numpy.asarray(training))

    #
    # scoring is on "scoreregion"
    #

    # try some scoring
    logger.info("now score")
    scoreData = []
    # now grab the values from the columns
    for node in finiteNodes:
        values = node.get_value()[scoreIndices]
        values[False == numpy.isfinite(values)] = 0  #pad inf as zero
        scoreData.append(values)

    scoreTable = numpy.stack(scoreData, axis=0)

    if scaling:
        data = scaler.transform(scoreTable.T)
    else:
        data = scoreTable.T

    score = model.predict(data)

    # now write the score back to the ouput
    # we need to fill in the remainings with Nan

    scoreFill = numpy.full(tableLen, numpy.inf)
    scoreFill[scoreIndices] = score
    outputNode.set_value(list(scoreFill))
    """
    #also get the confusion matrix
    matrix = {'00':0,'01':0,'11':0,'10':0}
    for val,score in zip(groundTruth[scoreIndices],score):
        entry = str(val)+str(score)
        matrix[entry]=matrix[entry]+1
    for entry in matrix:
        matrix[entry]=float(matrix[entry])/float(len(scoreIndices))
    logger.debug("Confusion Matrix"+str(matrix))
    functionNode.get_child("confusion").set_value(matrix)
    """

    return True
def logistic_regression2_old2(functionNode):
    """
     new version of the logistic regression:
     we are following the approach of a n-class classification where n-1 classes are given in the categoryMap starting at number 1,
     all data inside the regions (we support only one here) will be treated as category 0
    """
    scaling = True
    algorithm = "rf"  # of rf, lg

    logger = functionNode.get_logger()
    logger.info("==>>>> in logisticregression 2: " +
                functionNode.get_browse_path())

    # now get the input and outputs
    inputNodes = functionNode.get_child("input").get_leaves()
    for node in inputNodes:
        logger.debug("input node" + node.get_browse_path())

    outputNode = functionNode.get_child("output").get_leaves()[0]
    logger.debug("outputnode " + outputNode.get_browse_path())

    annotations = functionNode.get_child("annotations").get_leaves()

    if annotations:
        logger.debug("no annotations: " + str(len(annotations)))

    timeNode = inputNodes[0].get_table_time_node(
    )  # if the node is a column belonging to a time series table, we now get the time node of that table
    logger.debug("the time node is " + timeNode.get_browse_path())
    """
        now prepare the data for processing:

        1.1) take the annotated areas, collect all start and end times and get all indices of time inside the annotations
        1.2) use the map to match the tag labels to values 
        1.3) cut out the input data from the variable based on the indices from 1.1)
        1.4) train the model
        1.5) score on the full data
        1.6) write back the score to the output
    """

    # get the annotation map
    tagsMap = functionNode.get_child(
        "categoryMap").get_value()  # pick the category mapping from the model

    hasRegion = False
    # see if we have a "region" annotation (we only support one)
    for anno in annotations:
        if anno.get_child('tags').get_value()[0] == "region":
            regionStartDate = anno.get_child("startTime").get_value()
            regionEndDate = anno.get_child("endTime").get_value()
            hasRegion = True
            logger.debug("has Region:" + str(regionStartDate) + " " +
                         str(regionEndDate))
            regionStartTime = date2secs(regionStartDate)
            regionEndTime = date2secs(regionEndDate)
            regionIndices = timeNode.get_time_indices(regionStartTime,
                                                      regionEndTime)
            break  # only one supported

    # now prepare the training target values based on the given annotations,
    # the regions where no anno is given are set as 0
    # for simplicity we start with a training array of the full size of the table, later, we cut it
    # for the region

    tableLen = len(timeNode.get_value())
    training = numpy.full(tableLen, 0)  # set zero to all values as a padding

    #indices = []  # a list of indices which give the points in time that were labelled
    #training = []  # the training values are the tags from the annoations translated via the tagsmap
    for anno in annotations:
        startTime = date2secs(anno.get_child("startTime").get_value())
        endTime = date2secs(anno.get_child("endTime").get_value())

        tag = anno.get_child('tags').get_value()[0]
        if tag in tagsMap:
            #we take annotations that have a tag which was selected in the tagsMap
            if hasRegion == False or (startTime >= regionStartTime
                                      and endTime <= regionEndTime):
                #we only take annotations inside the region
                annoIndices = list(
                    timeNode.get_time_indices(startTime, endTime)
                )  # this gives us the indices in the table between start and end time
                #now set the values with fancy indexing
                training[annoIndices] = tagsMap[tag]

    #now cut the region if we have one via fancy indexing
    if hasRegion:
        training = training[regionIndices]

    trainingData = []
    # now grab the values from the columns
    finiteNodes = []

    for node in inputNodes:
        values = numpy.asarray(node.get_value())
        if hasRegion:
            values = values[regionIndices]

        if numpy.isfinite(values).all():
            trainingData.append(list(values))
            finiteNodes.append(node)
            logger.debug("has good finite values" + node.get_name())
        else:
            logger.warning("some infinite values in " + node.get_name())
            #now pad with zero
            values[False == numpy.isfinite(values)] = 0
            trainingData.append(list(values))
            finiteNodes.append(node)
    table = numpy.stack(trainingData, axis=0)

    # now fit the model
    #model = LogisticRegression()
    model = RandomForestClassifier(n_estimators=50, max_features=10)

    scaler = StandardScaler()
    scaler.fit(table.T)
    if scaling:
        data = scaler.transform(table.T)
        model.fit(data, numpy.asarray(training))
    else:
        model.fit(table.T, numpy.asarray(training))

    #
    # scoring is on "scoreregion"
    #

    if hasRegion:
        tableNode = timeNode.get_table_node()
        tableLen = tableNode.get_table_len()

    # try some scoring
    logger.info("now score")
    scoreData = []
    # now grab the values from the columns
    for node in finiteNodes:
        if hasRegion:
            values = node.get_value()[regionIndices]
        else:
            values = node.get_value()
        values[False == numpy.isfinite(values)] = 0  #pad inf as zero
        scoreData.append(values)

    scoreTable = numpy.stack(scoreData, axis=0)

    if scaling:
        data = scaler.transform(scoreTable.T)
        score = model.predict(data)
    else:
        score = model.predict(scoreTable.T)

    # now write the score back to the ouput
    if hasRegion:
        # we need to fill in the remainings with Nan
        scoreFill = numpy.full(tableLen, numpy.inf)
        scoreFill[regionIndices] = score
        outputNode.set_value(list(scoreFill))
    else:
        outputNode.set_value(list(score))

    #also get the confusion matrix
    matrix = {'00': 0, '01': 0, '11': 0, '10': 0}
    for val, score in zip(training, score):
        entry = str(val) + str(score)
        matrix[entry] = matrix[entry] + 1
    for entry in matrix:
        matrix[entry] = float(matrix[entry]) / float(len(training))
    logger.debug("Confusion Matrix" + str(matrix))

    return True
Beispiel #14
0
def import_run(functionNode):

    logger = functionNode.get_logger()
    logger.debug(f"import running..")
    timeStartImport = dt.datetime.now()
    model = functionNode.get_model()

    # --- define vars
    importerNode = functionNode.get_parent()
    progressNode = functionNode.get_child("control.progress")

    # --- [vars] define
    #tablename = functionNode.get_child("tablename").get_value()
    #logger.debug(f"tablename: {tablename}")

    #  # --- create needed nodes
    #importerNode.create_child('imports', type="folder")
    imports = importerNode.get_child("imports")

    # TODO importsNode.get_child(tablename).delete()
    #importsNode.create_child(tablename, type="folder")
    #table = importsNode.get_child(tablename)
    #table.create_child('variables', type="folder")
    #table.create_child('columns', type="referencer")
    #table.create_child('metadata', type="const")
    #vars = table.get_child("variables")
    #cols = table.get_child("columns")

    # --- read metadata and fields
    metadataRaw = functionNode.get_child("metadata").get_value()
    metadata = json.loads(metadataRaw)
    #table.get_child("metadata").set_value(metadata)
    #fields = metadata["variables"] 
    # timefield = int(metadata["timefield"]) - 1
    #timefield = 0
    #filenames = metadata["filenames"]
    #headerexists = metadata["headerexists"]

    #csv_data : any
    # --- load csv data
    # * https://www.shanelynn.ie/python-pandas-read_csv-load-data-from-csv-files/
    # * [ ] optimize speed? https://stackoverflow.com/questions/16476924/how-to-iterate-over-rows-in-a-dataframe-in-pandas
    # * [ ] vectorize a loop https://stackoverflow.com/questions/27575854/vectorizing-a-function-in-pandas
    
    # for filename in filenames:
    #     filepath = 'upload/' + filename 
    #     df = pd.read_csv(filepath)
    #     csv_data = [df]

    # csv_data = pd.concat(csv_data, axis=1, join='inner').sort_index()


    class Progress():
        def __init__(self,progressNode):
            self.progressNode = progressNode
            self.lastTime = time.time()
        def set_progress(self,value):
            now = time.time()
            if now > self.lastTime+1:
                self.progressNode.set_value(self.offset+float(value)/self.div)
                self.lastTime = now
        def set_offset(self,offset):
            self.offset=offset
        def set_divisor(self,div):
            self.div = float(div)

    totalProgress = 0
    progressPerFile = 0.8/ len(metadata["filenames"]) # for each file 2 steps: the get lenght and the actual import
    progress = Progress(progressNode)

    notify={}
    model.disable_observers()

    #findTs = FindExistingVariable(functionNode.get_parent().get_child("imports"),typ="timeseries")#prepare the search
    #findEv = FindExistingVariable(functionNode.get_parent().get_child("imports"),typ="eventseries")#prepare the search
    newVarsCreated = True #trigger the first search for existing vars

    try:
        for fileNo,fileName in enumerate(metadata["filenames"]):
            
            if newVarsCreated:
                findTs = FindExistingVariable(functionNode.get_parent().get_child("imports"),typ="timeseries")#prepare the search
                findEv = FindExistingVariable(functionNode.get_parent().get_child("imports"),typ="eventseries")#prepare the search
                newVarsCreated = False

            filepath = 'upload/' + fileName

            #first check the filesize
            numLines= sum(1 for line in open(filepath))
            progress.set_divisor(numLines/progressPerFile*2)
            progress.set_offset(fileNo*progressPerFile)
            
            csv_data = pd.read_csv(filepath,skiprows=lambda x: progress.set_progress(x) and False)#,encoding="utf-8")

            progress.set_offset(fileNo*progressPerFile+progressPerFile/2)
            progress.set_divisor(len(csv_data.columns[1:])/progressPerFile*2)

            fileFolderName = fileName.replace('.','_')
            
            # --- define time list
            # * select rows and columns from dataframe https://thispointer.com/select-rows-columns-by-name-or-index-in-dataframe-using-loc-iloc-python-pandas/
            timeList = csv_data.iloc[:,0].to_list()
            epochs = [date2secs(time) for time in timeList]
            #print(epochs)

            # --- import data, set vars and columns
            data = {}
            hasEvents = False
            #metadata["variables"]=["*"]#["Temperature","Humidity"]#hack for testing
            for idx,colName in enumerate(csv_data.columns[1:]): 
                print(idx)
                progress.set_progress(idx)
                if not (colName in metadata["variables"] or metadata["variables"]==["*"] or metadata["variables"]=="*"):
                    continue
                fieldname = str(colName).replace('.','_')
                # now check if the column is data or event
                data = csv_data.loc[:,fieldname].to_list()
                try:
                    isTs = True
                    values = numpy.asarray(data,dtype=numpy.float64) #if that works, it's a time series data
                except Exception as ex:
                    isTs = False

                if isTs:
                    #now check if that variables already exists, and try to put the data there
                    fieldVar = findTs.find(fieldname)#find_existing_variable(imports,fieldname)
                    if not fieldVar:
                        #need to create it
                        folder = imports.create_child("variables",type="folder").create_child(fileFolderName,type="folder") # if is exists, we just get the folder
                        fieldVar = folder.create_child(fieldname, type="timeseries")
                        notify[folder.get_id()]="children"
                        #fieldVar.set_time_series(values=values, times=epochs)
                        #fieldVar.delete
                        fieldVar.insert_time_series(values=values, times=epochs,allowDuplicates = False) #avoid double times
                        notify[fieldVar.get_id()]="value"
                        newVarsCreated=True #trigger the update of the variable lookup
                    else:
                        logger.debug(f"variable {fieldname} exists already as {fieldVar.get_browse_path()}, we use that")
                        fieldVar.insert_time_series(values=values, times=epochs,allowDuplicates = False)
                        notify[fieldVar.get_id()]="value"

                    logger.debug(f"import val: {fieldname} as timeseries")
                else:
                    #conversion was not possible, this is an event col
                    #now check if that exists already
                    isNewEventVar = False
                    eventVar = findEv.find(fieldname)#find_existing_variable(imports,fieldname,typ="eventseries")
                    if not eventVar:
                        eventVar = imports.create_child(fieldname,type="eventseries")
                        notify[eventVar.get_id()]="children"
                        isNewEventVar = True
                        newVarsCreated=True #trigger the update of the variable lookup
                    #now build up the series, leave out the nans (which were created by making rows like 15.2,,,start,,,4
                    vals = []
                    tims = []
                    for ev,tim in zip(data,epochs):
                        if type(ev) is str:
                            evStr = str(ev)
                        else:
                            #it still might be number, so try to convert
                            try:
                                number = numpy.float64(ev)
                                if numpy.isfinite(number):
                                    evStr = str(number)
                                else:
                                    logger.error(f"cant convert {ev}")
                                    continue
                            except:
                                logger.error(f"cant convert {ev}")
                                continue
                        vals.append(evStr.strip(" "))#remove space at start and end
                        tims.append(tim)
                    if isNewEventVar:
                        eventVar.set_event_series(values=vals, times=tims)
                    else:
                        eventVar.insert_event_series(values=vals, times=tims)
                    notify[eventVar.get_id()]="value"
                    hasEvents = True
                    logger.debug(f"import val: {fieldname} as eventseries")
    except Exception as ex:
        model.enable_observers()
        logger.error(f" in importer ex {ex}")
        return False
    
    # look for nodes of type widget and ensure variables can be selected
    
    progressNode.set_value(0.9)
    model.enable_observers()
    progress.set_divisor(len(notify))
    progress.set_offset(0)
    count = 0
    for k,v in notify.items():
        count = count +1
        progress.set_progress(count)
        model.notify_observers(k, [v])

    
    workbench_model = functionNode.get_model()
    widget_nodes: List[Node] = workbench_model.find_nodes("root", matchProperty={"type": "widget"})
    try:
        autoTake = functionNode.get_child("autoTakeEvents").get_value()
    except:
        autoTake = True
    logger.debug(f"Autotake the Event:{autoTake}")

    for widget_node in widget_nodes:
        selectable_variables_referencer: Node = widget_node.get_child("selectableVariables")
        selectable_variables_referencer.add_references(imports.get_child("variables").get_children())

        #now hook the events in
        if hasEvents and autoTake:
            #use the event variable as the new standard event variable
            widget_node.get_child("hasEvents.events").add_references(eventVar,deleteAll=True)

            #prepare the visibleEvents: get the old setting and update if there is any new
            #visibleEvents = {ev:False for ev in set(vals)}
            visibleEvents = widget_node.get_child("hasEvents.visibleEvents").get_value()
            for event in set(vals):
                if event not in visibleEvents:
                    visibleEvents[event]=False
            widget_node.get_child("hasEvents.visibleEvents").set_value(visibleEvents)

            #prepare the colors
            palette = ["#f41fb3","#b20083","#a867dd","#68b8e7","#04a75e","#41ff87","#618a04","#eaf4c7","#ffce18","#8f4504"] #from https://loading.io/color/random/
            cols = widget_node.get_child("hasEvents.colors").get_value()
            for idx,ev in enumerate(set(vals)):#
                if ev not in cols:
                    cols[ev]={"color":palette[idx%10]}
            widget_node.get_child("hasEvents.colors").set_value(cols)
            widget_node.get_child("hasEvents.events").add_references(eventVar,deleteAll=True)
            #turn on events
            widget_node.get_child("hasEvents").set_value(True)
            #make the entry in the visible elements
            visibleElements = widget_node.get_child("visibleElements").get_value()
            if not "events" in visibleElements:
                visibleElements["events"]=False
                widget_node.get_child("visibleElements").set_value(visibleElements)
            #watch the state
            widget_node.get_child("observerVisibleElements.targets").add_references(widget_node.get_child("hasEvents.visibleEvents"),allowDuplicates=False)
            #trigger the event
            model = functionNode.get_model()
            model.notify_observers(eventVar.get_id(), ["value"]) #to trigger the widget to reload the event data

    logger.debug(f"import complete (seconds: {(dt.datetime.now()-timeStartImport).seconds})")
   
    return True