transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) # Initialize CNN K = 500 # total number of exemplars icarl = iCaRLNet(2048, 3) icarl.cuda() for s in range(0, total_classes, num_classes): # Load Datasets print("Loading training examples for classes", range(s, s + num_classes)) # train_set = iCIFAR10(root='./data', # train=True, # classes=range(s,s+num_classes), # download=True, # transform=transform_test) train_set = mnist(train=True, classes=range(s, s + num_classes), transform=transform_test) train_loader = torch.utils.data.DataLoader(train_set, batch_size=128,
transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) # Initialize CNN K = 2000 # total number of exemplars icarl = iCaRLNet(2048, 10) icarl.cuda() for s in range(0, total_classes, num_classes): # Load Datasets print("Loading training examples for classes", range(s, s + num_classes)) train_set = iCIFAR100(root='./data', train=True, classes=range(s, s + num_classes), download=True, transform=transform_test) train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True, num_workers=0)