def guild_list(): guild_name = request.args.get("guild").title() guild_server = request.args.get("server").title() guild_region = request.args.get("region").upper() guild_id_string = guild_name+"_"+guild_server+"_"+guild_region redis_guild = r.hgetall(guild_id_string) if model.is_empty(redis_guild) == True: guild = model.logs_new_guild(guild_name, guild_server, guild_region) else: # print redis_guild guild = {} guild["guild_name"] = redis_guild["guild_name"] guild["guild_server"] = redis_guild["guild_server"] guild["guild_region"] = redis_guild["guild_region"] guild["logs"] = eval(redis_guild["logs"]) return render_template("guild_list.html", guild=guild)
def guild_list(): guild_name = request.args.get("guild").title() guild_server = request.args.get("server").title() guild_region = request.args.get("region").upper() guild_id_string = guild_name + "_" + guild_server + "_" + guild_region redis_guild = r.hgetall(guild_id_string) if model.is_empty(redis_guild) == True: guild = model.logs_new_guild(guild_name, guild_server, guild_region) else: # print redis_guild guild = {} guild["guild_name"] = redis_guild["guild_name"] guild["guild_server"] = redis_guild["guild_server"] guild["guild_region"] = redis_guild["guild_region"] guild["logs"] = eval(redis_guild["logs"]) return render_template("guild_list.html", guild=guild)
def test_most_popular_empty(self): popular = model.most_popular() self.assertFalse(model.is_empty(popular[1]["url"]))
def test_recently_shortened(self): recent = model.recently_shortened() self.assertFalse(model.is_empty(recent))
def test_empty(self): self.assertTrue(model.is_empty(self.empty)) self.assertFalse(model.is_empty(self.code))
def main(): training_images, training_labels, test_images, test_labels = md.Load_Data( mat) if REMOVE_EMPTY: empty_idx = md.is_empty(training_images, training_labels) images_transform = np.delete(training_images, empty_idx, 0) labels_transform = np.delete(training_labels, empty_idx, 0) training_data = md.GetData(images_transform, labels_transform) else: training_data = md.GetData(training_images, training_labels) test_data = md.GetData(test_images, test_labels) g = tf.Graph() with g.as_default(): images = tf.placeholder(tf.float32, [BATCH_SIZE, 256, 256, 1]) labels = tf.placeholder(tf.int64, [BATCH_SIZE, 256, 256]) is_training = tf.placeholder(tf.bool) if AUGMENT_IMAGE: images, labels = md.image_augmentation(images, labels) logits = md.inference(images, is_training) loss = md.loss_calc(logits=logits, labels=labels) train_op, global_step = md.training(loss=loss, learning_rate=1e-04) accuracy = md.evaluation(logits=logits, labels=labels) dice = md.get_dice(logits=logits, labels=labels) summary = tf.summary.merge_all() init = tf.global_variables_initializer() saver = tf.train.Saver( [x for x in tf.global_variables() if 'Adam' not in x.name]) sm = tf.train.SessionManager() with sm.prepare_session("", init_op=init, saver=saver, checkpoint_dir=LOG_DIR) as sess: sess.run( tf.variables_initializer( [x for x in tf.global_variables() if 'Adam' in x.name])) train_writer = tf.summary.FileWriter(LOG_DIR + "/Train", sess.graph) test_writer = tf.summary.FileWriter(LOG_DIR + "/Test") global_step_value, = sess.run([global_step]) print("Last trained iteration was: ", global_step_value) for step in range(global_step_value + 1, global_step_value + MAX_STEPS + 1): print("Iteration: ", step) images_batch, labels_batch = training_data.next_batch( BATCH_SIZE) train_feed_dict = { images: images_batch, labels: labels_batch, is_training: True } train_dice_value, _, train_loss_value, train_accuracy_value, train_summary_str = sess.run( [dice, train_op, loss, accuracy, summary], feed_dict=train_feed_dict) if step % SAVE_INTERVAL == 0: print("Train Loss: ", train_loss_value) print("Train accuracy: ", train_accuracy_value) print("Train dice: ", train_dice_value) train_writer.add_summary(train_summary_str, step) train_writer.flush() images_batch, labels_batch = test_data.next_batch( BATCH_SIZE) test_feed_dict = { images: images_batch, labels: labels_batch, is_training: False } test_dice_value, test_loss_value, test_accuracy_value, test_summary_str = sess.run( [dice, loss, accuracy, summary], feed_dict=test_feed_dict) print("Test Loss: ", test_loss_value) print("Test accuracy: ", test_accuracy_value) print("Test dice: ", test_dice_value) test_writer.add_summary(test_summary_str, step) test_writer.flush() saver.save(sess, CHECKPOINT_FL, global_step=step) print("Session Saved") print("================")