def segment_normal_distribution_shift_flip_brightness_shadow(): data_set = DriveDataSet.from_csv( "datasets/udacity-sample-track-1/driving_log.csv", crop_images=True, all_cameras_images=True, filter_method=drive_record_filter_include_all) # fine tune every part of training data so that make it meat std distrubtion allocator = AngleSegmentRecordAllocator( data_set, AngleSegment((-1.5, -0.5), 10), # big sharp left AngleSegment((-0.5, -0.25), 14), # sharp left AngleSegment((-0.25, -0.249), 3), # sharp turn left (zero right camera) AngleSegment((-0.249, -0.1), 10), # big turn left AngleSegment((-0.1, 0), 11), # straight left AngleSegment((0, 0.001), 4), # straight zero center camera AngleSegment((0.001, 0.1), 11), # straight right AngleSegment((0.1, 0.25), 10), # big turn right AngleSegment((0.25, 0.251), 3), # sharp turn right (zero left camera) AngleSegment((0.251, 0.5), 14), # sharp right AngleSegment((0.5, 1.5), 10) # big sharp right ) # a pipe line with shift -> flip -> brightness -> shadow augment processes augment = pipe_line_generators( shift_image_generator(angle_offset_pre_pixel=0.002), flip_generator, brightness_image_generator(0.35), shadow_generator) data_generator = DataGenerator(allocator.allocate, augment) model = nvidia(input_shape=data_set.output_shape(), dropout=0.5) Trainer(model, learning_rate=0.0001, epoch=45, multi_process=use_multi_process, custom_name=inspect.stack()[0][3]).fit_generator( data_generator.generate(batch_size=256))
def raw_data_centre_left_right_image_crop(): # crop_images=True was the only difference data_set = DriveDataSet.from_csv( "datasets/udacity-sample-track-1/driving_log.csv", crop_images=True, all_cameras_images=True, filter_method=drive_record_filter_include_all) allocator = RecordRandomAllocator(data_set) generator = image_itself data_generator = DataGenerator(allocator.allocate, generator) model = nvidia(input_shape=data_set.output_shape(), dropout=0.5) Trainer(model, learning_rate=0.0001, epoch=10, custom_name=inspect.stack()[0][3]).fit_generator( data_generator.generate(batch_size=128))
def raw_data_centre_left_right_crop_shift_flip(): data_set = DriveDataSet.from_csv( "datasets/udacity-sample-track-1/driving_log.csv", crop_images=True, all_cameras_images=True, filter_method=drive_record_filter_include_all) allocator = RecordRandomAllocator(data_set) # shift_image_generator was the only difference generator = pipe_line_generators( shift_image_generator(angle_offset_pre_pixel=0.002), flip_generator) data_generator = DataGenerator(allocator.allocate, generator) model = nvidia(input_shape=data_set.output_shape(), dropout=0.5) Trainer(model, learning_rate=0.0001, epoch=20, multi_process=use_multi_process, custom_name=inspect.stack()[0][3]).fit_generator( data_generator.generate(batch_size=128))
def raw_data_centre_image_no_dropout(): # Create DriveDataSet from csv file, you can specify crop image, using all cameras and which data will included in data_set = DriveDataSet.from_csv( "datasets/udacity-sample-track-1/driving_log.csv", crop_images=False, all_cameras_images=False, filter_method=drive_record_filter_include_all) # What the data distribution will be, below example just randomly return data from data set, so that the # distribution will be same with what original data set have allocator = RecordRandomAllocator(data_set) # what's the data augment pipe line have, this have no pipe line, just the image itself augment = image_itself # connect allocator and augment together data_generator = DataGenerator(allocator.allocate, augment) # create the model model = nvidia(input_shape=data_set.output_shape(), dropout=0.0) # put everthing together, start a real Keras training process with fit_generator Trainer(model, learning_rate=0.0001, epoch=10, custom_name=inspect.stack()[0][3]).fit_generator( data_generator.generate(batch_size=128))
def segment_left_centre_right(): data_set = DriveDataSet.from_csv( "datasets/udacity-sample-track-1/driving_log.csv", crop_images=True, all_cameras_images=True, filter_method=drive_record_filter_include_all) allocator = AngleTypeWithZeroRecordAllocator( data_set, left_percentage=20, right_percentage=20, zero_percentage=8, zero_left_percentage=6, zero_right_percentage=6, left_right_image_offset_angle=0.25) generator = pipe_line_generators( shift_image_generator(angle_offset_pre_pixel=0.002), flip_generator, brightness_image_generator(0.25), shadow_generator) data_generator = DataGenerator(allocator.allocate, generator) model = nvidia(input_shape=data_set.output_shape(), dropout=0.5) Trainer(model, learning_rate=0.0001, epoch=10).fit_generator(data_generator.generate(batch_size=128))
for batch_size in BATCH_SIZE: training_data_generator = KerasGenerator(training_data, batch_size, INPUT_SHAPE, preprocessor, augmenter=augmenter) validation_data_generator = KerasGenerator(validation_data, batch_size, INPUT_SHAPE, preprocessor) for lr in LR: model_details = '{}-{}.{}'.format(batch_size, lr, model_name) model = nvidia(INPUT_SHAPE) optimizer = Adam(lr=lr) model.compile(optimizer=optimizer, loss=LOSS) progbar_logger = ProgbarLogger(count_mode='steps') model_checkpoint = ModelCheckpoint( '../models/' + model_details + '.{epoch:02d}-{val_loss:.2f}.hdf5') early_stopping = EarlyStopping(patience=PATIENCE) callbacks = [progbar_logger, model_checkpoint, early_stopping] history = model.fit_generator( training_data_generator, validation_data=validation_data_generator, callbacks=callbacks,