def __remove_row_from_file(self, value): file = read_file() record = [row for row in file if value in row] file.remove(record[0]) file = [';'.join(row) for row in file] rewrite_file(file)
def solve(identifier): user = myself() challenge = next((x for x in CHALLENGES if x.identifier == identifier), None) if challenge is None: raise InvalidUsage('challenge not found', status_code=404) records = user.records.where(Record.challenge == identifier).limit(1) record = records[0] record.start() codechallenge = { "user": user.json, "challenge": challenge.json, } readme = read_file(challenge.readme) return render_template("solve.html", codechallenge=json.dumps(codechallenge, indent=4, sort_keys=True), fullname=user.email, readme=readme, challenge=challenge)
def read_order_file(input_file_name): """ Reads input order file invalid (InvalidOrder) orders :param input_file_name: Path to orders input file :return: 1 - list of valid orders (ValidOrder) 2 - list of invalid orders (InvalidOrder) 3 - read_successful True if reading file is successful, else False """ # read & validate orders file (valid_orders and/or invalid_orders may be length = 0) valid_orders = [] invalid_orders = [] read_successful = True try: valid_orders, invalid_orders = model.read_file(input_file_name) except FileNotFoundError as ex: msg = 'FileNotFoundError (check file path) occurred while reading {path}. Exception=[{exception}'. \ format(path=input_file_name, exception=ex) view.display_msg(msg) read_successful = False except StopIteration: msg = 'StopIteration (check file size) occurred while reading {path}.'. \ format(path=input_file_name) view.display_msg(msg) read_successful = False except Exception as ex: msg = 'Unknown exception {ex} occurred while reading {path}.'. \ format(ex=ex, path=input_file_name) view.display_msg(msg) read_successful = False finally: return valid_orders, invalid_orders, read_successful
def all(self, sort=None): file = read_file() if sort: model = ['NOME', 'CPF', 'EMAIL', 'TELEFONE'] file = sorted(file, key=(lambda item: item[model.index(sort)])) return file
def handle_request(request): if request.GET.button: if __is_authenticated(request): return successfully_authenticated(request.GET.user) write_file(request.GET.user) attempts = ', '.join(read_file()) return access_denied(attempts) return login_page()
def handle_request(request): if request.GET.button: if __is_authenticated(request): return successfully_authenticated(request.GET.user) write_file(request.GET.user) file_content = read_file() users = set(file_content) user_attempts = [] for user in users: attemps = file_content.count(user) user_attempts.append((user, attemps)) return access_denied(user_attempts) return login_page()
def handle_add_contacts_request(): if request.GET.button: name = request.GET.name age = request.GET.age gender = request.GET.gender if name or age or gender: if name and age and gender: write_file(f'{name};{age};{gender}') else: return add_contact('Preencha todos os dados') file = read_file() return (redirect('/list-contacts') if file else add_contact('O arquivo está vazio')) return add_contact()
def handle_add_contacts_request(): if request.GET.button: name = request.GET.name id = request.GET.id email = request.GET.email phone = request.GET.phone if name or id or email or phone: if name and id and email and phone: write_file(f'{name};{id};{email};{phone}') else: return add_contact('Preencha todos os dados') file = read_file() return (redirect('/list-contacts') if file else add_contact('O arquivo está vazio')) return add_contact()
def test_model_read_file(): # # test successful read file # input_file_name = os.path.join('../input', 'orders.csv') valid_orders, invalid_orders = model.read_file(input_file_name) assert len(valid_orders) == 4 assert len(invalid_orders) == 0 # # test missing file exception is raised # input_file_name = os.path.join('../input', 'orders_xxx.csv') pytest.raises(FileNotFoundError, model.read_file, input_file_name) # # test zero length file exception is raised # input_file_name = 'file_size_zero.txt' os.system('touch {0}'.format(input_file_name)) os.truncate(input_file_name, 0) pytest.raises(StopIteration, model.read_file, input_file_name) os.system('rm {0}'.format(input_file_name))
def get(self, value): file = read_file() file = [row for row in file if value in str(row)] return file
def handle_list_contacts_request(): return list_contacts(read_file())
# Karl Jiang, karljiang # # Generate plots and print text answers for the CITY data # import sys from model import linear_regression, apply_beta, read_file, Model, r_squared_table\ , compute_r_squared, print_model, get_highest_pair, forward_selection_r_squared, \ output_sel, select_best_k, test_foward_select # useful defined constants for the city data COMPLAINT_COLS = range(0, 7) CRIME_TOTAL_COL = 7 file = "city" variables, data = read_file("data/{}/training.csv".format(file)) if __name__ == "__main__": #Task 1a print(file, "Task", "1A") print(r_squared_table(variables, data, CRIME_TOTAL_COL) ) print() #\n #Task 1b print(file, "Task", "1B") model_1b = Model(variables, data, CRIME_TOTAL_COL, list(COMPLAINT_COLS) ) r2 = compute_r_squared(model_1b.beta, model_1b.pre_col, model_1b.dep_col) print(print_model (model_1b.pre_var, r2) ) print()#\n
# CS121 Linear regression assignment # # Kristen Witte, kwitte # # Generate plots and print text answers for the STOCK data # import sys import model # useful defined constants for the stock data #STOCKS = range(0, 11) #DJIA = 11 #### Did not use col_names, data = model.read_file("data/stock/training.csv") col_names, test_data = model.read_file("data/stock/testing.csv") ##TASK 1A print("Task 1A") all_r2 = model.get_R2(col_names, data, "Single") names_1A = col_names[:7] model.make_table(all_r2, names_1A) ##TASK 1B print("Task 1B") combined_r2 = model.get_R2(col_names, data, "Multi") names_1B = ["All"] model.make_table(combined_r2, names_1B)
# CS121 Linear regression assignment # # Manuel Aragones and CNET ID(s) 446154 # # Generate plots and print text answers for the ELECTION data # import sys import numpy as np import model from model import * # create a list of names and numpy array col_names, data_train = model.read_file('data/election/training.csv') col_names_test, data_test = model.read_file('data/election/testing.csv') print(col_names) print(col_names[11]) # useful defined constants for the election data COUNTY_DATA_COLS = range(0, 11) VOTE_DIFFERENCE_COL = 11 # define the dependant variable Y_NAME = 'VOTES_DIFF' # get the index of the variable y_index = col_names.index(Y_NAME) # slice the data with a mechanism compatible with linear_regression # and apply_beta y = data_train[:,y_index]
# CS121 Linear regression assignment # # Manuel Aragones and CNET ID(s) 446154 # # Generate plots and print text answers for the CITY data # import sys import numpy as np import model from model import * # create a list of names and numpy array col_names, data_train = model.read_file('data/city/training.csv') col_names_test, data_test = model.read_file('data/city/testing.csv') # define the dependant variable Y_NAME = 'CRIME_TOTALS' # get the index of the variable y_index = col_names.index(Y_NAME) # slice the data with a mechanism compatible with linear_regression # and apply_beta y = data_train[:,y_index] y_test = data_test[:,y_index] # define the independant variables. This method is better than using # numbers as you see the name of the variables X_NAMES = ['GRAFFITI', 'POT_HOLES', 'RODENTS', 'GARBAGE',
def all(self, filter=None): return read_file()
from __future__ import print_function import numpy as np import tensorflow as tf import time import model # Parameter definitions batch_size = 200 learning_rate = 0.05 max_steps = 1000 # Prepare data X_train, Y_train = model.read_file("../data/downgesture_train.list") X_test, Y_test = model.read_file("../data/downgesture_test.list") #print(Y_train) # input placeholders images_placeholder = tf.placeholder(tf.float32, shape=[None, 960]) labels_placeholder = tf.placeholder(tf.int64, shape=[None],name="label") # variables (these are the values we want to optimize) w1 = tf.Variable(tf.random_normal([960, 100]) * 0.01) b1 = tf.Variable(tf.random_normal([100]) * 0.01) y1 = tf.matmul(images_placeholder, w1) + b1 w2 = tf.Variable(tf.random_normal([100,2]) * 0.01) b2 = tf.Variable(tf.random_normal([2]) * 0.01)
################## # Tests for PA6 # # import numpy as np import model #data = np.array([[0, 0 , 0, 6], [0, 1, 0, 0], [0, 1, 1, 96]]) #col_names = ["G", "R", "T", "CR"] col_names, data_training = model.read_file("data/city/training.csv") col_names, data_testing = model.read_file("data/city/testing.csv") #all_r2 = model.get_R2(col_names, data, "Single") #combined_r2 = model.get_R2(col_names, data, "Multi") #bivar_r2 = model.get_R2(col_names, data, "BiVar") #print(bivar_r2) def get_R2(col_names, data_training, data_testing, num_vars): total_cols = len(col_names) y_testing = data_testing[:, (total_cols - 1)] y_training = data_training[:, (total_cols - 1)] all_training = data_training[: , 0:total_cols - 1] all_testing = data_testing[: , 0:total_cols - 1] y_mean = (y_testing.sum()/len(y_testing))