Beispiel #1
0
def generate(**kwargs):
    opt = Config()
    for k, v in kwargs.items():
        setattr(opt, k, v)
    device=t.device('cuda') if opt.use_gpu else t.device('cpu')

    # 数据预处理
    data = t.load(opt.caption_data_path, map_location=lambda s, l: s)
    word2ix, ix2word = data['word2ix'], data['ix2word']

    normalize = tv.transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.scale_size),
        tv.transforms.CenterCrop(opt.img_size),
        tv.transforms.ToTensor(),
        normalize
    ])
    img = Image.open(opt.test_img)
    img = transforms(img).unsqueeze(0)

    # 用resnet50来提取图片特征
    resnet50 = tv.models.resnet50(True).eval()
    del resnet50.fc
    resnet50.fc = lambda x: x
    resnet50.to(device)
    img = img.to(device)
    img_feats = resnet50(img).detach()

    # Caption模型
    model = CaptionModel(opt, word2ix, ix2word)
    model = model.load(opt.model_ckpt).eval()
    model.to(device)

    results = model.generate(img_feats.data[0])
    print('\r\n'.join(results))
Beispiel #2
0
def generate(**kwargs):
    opt = Config()
    for k, v in kwargs.items():
        setattr(opt, k, v)
    device = t.device('cuda') if opt.use_gpu else t.device('cpu')

    # 数据预处理
    data = t.load(opt.caption_data_path, map_location=lambda s, l: s)
    word2ix, ix2word = data['word2ix'], data['ix2word']

    normalize = tv.transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.scale_size),
        tv.transforms.CenterCrop(opt.img_size),
        tv.transforms.ToTensor(), normalize
    ])
    img = Image.open(opt.test_img)
    img = transforms(img).unsqueeze(0)

    # 用resnet50来提取图片特征
    resnet50 = tv.models.resnet50(True).eval()
    del resnet50.fc
    resnet50.fc = lambda x: x
    resnet50.to(device)
    img = img.to(device)
    img_feats = resnet50(img).detach()

    # Caption模型
    model = CaptionModel(opt, word2ix, ix2word)
    model = model.load(opt.model_ckpt).eval()
    model.to(device)

    results = model.generate(img_feats.data[0])
    print('\r\n'.join(results))
Beispiel #3
0
def train(**kwargs):

    device = t.device('cuda') if t.cuda.is_available() else t.device('cpu')
    for k, v in kwargs.items():
        setattr(opt, k, v)

    dataloader = get_dataloader(opt)
    model = CaptionModel(opt, dataloader.dataset.word2ix,
                         dataloader.dataset.id2ix)
    if opt.model_path:
        model.load_state_dict(t.load(opt.model_path, map_location='cpu'))
    t.backends.cudnn.enabled = False
    model = model.to(device)

    optimizer = Adam(model.parameters(), opt.lr)
    criterion = t.nn.CrossEntropyLoss()
    for epoch in range(opt.max_epoch):
        for ii, (imgs, (captions, lengths),
                 indexes) in tqdm.tqdm(enumerate(dataloader)):

            imgs = Variable(imgs).to(device)
            captions = Variable(captions).to(device)
            pred, _ = model(imgs, captions, lengths)
            target_captions = pack_padded_sequence(captions, lengths)[0]

            loss = criterion(pred, target_captions)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        print("Current Loss: ", loss.item())
        if (epoch + 1) % opt.save_model == 0:
            t.save(model.state_dict(), "checkpoints/{}.pth".format(epoch))
Beispiel #4
0
def train(**kwargs):
    opt = Config()
    for k, v in kwargs.items():
        setattr(opt, k, v)
    device=t.device('cuda') if opt.use_gpu else t.device('cpu')

    opt.caption_data_path = 'caption.pth'  # 原始数据
    opt.test_img = ''  # 输入图片
    # opt.model_ckpt='caption_0914_1947' # 预训练的模型

    # 数据
    vis = Visualizer(env=opt.env)
    dataloader = get_dataloader(opt)
    _data = dataloader.dataset._data
    word2ix, ix2word = _data['word2ix'], _data['ix2word']

    # 模型
    model = CaptionModel(opt, word2ix, ix2word)
    if opt.model_ckpt:
        model.load(opt.model_ckpt)
    optimizer = model.get_optimizer(opt.lr)
    criterion = t.nn.CrossEntropyLoss()
   
    model.to(device)

    # 统计
    loss_meter = meter.AverageValueMeter()

    for epoch in range(opt.epoch):
        loss_meter.reset()
        for ii, (imgs, (captions, lengths), indexes) in tqdm.tqdm(enumerate(dataloader)):
            # 训练
            optimizer.zero_grad()
            imgs = imgs.to(device)
            captions = captions.to(device)
            input_captions = captions[:-1]
            target_captions = pack_padded_sequence(captions, lengths)[0]
            score, _ = model(imgs, input_captions, lengths)
            loss = criterion(score, target_captions)
            loss.backward()
            optimizer.step()
            loss_meter.add(loss.item())

            # 可视化
            if (ii + 1) % opt.plot_every == 0:
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()

                vis.plot('loss', loss_meter.value()[0])

                # 可视化原始图片 + 可视化人工的描述语句
                raw_img = _data['ix2id'][indexes[0]]
                img_path = opt.img_path + raw_img
                raw_img = Image.open(img_path).convert('RGB')
                raw_img = tv.transforms.ToTensor()(raw_img)

                raw_caption = captions.data[:, 0]
                raw_caption = ''.join([_data['ix2word'][ii] for ii in raw_caption])
                vis.text(raw_caption, u'raw_caption')
                vis.img('raw', raw_img, caption=raw_caption)

                # 可视化网络生成的描述语句
                results = model.generate(imgs.data[0])
                vis.text('</br>'.join(results), u'caption')
        model.save()
Beispiel #5
0
def train(**kwargs):
    opt = Config()
    for k, v in kwargs.items():
        setattr(opt, k, v)
    device = t.device('cuda') if opt.use_gpu else t.device('cpu')

    opt.caption_data_path = 'caption.pth'  # 原始数据
    opt.test_img = ''  # 输入图片
    # opt.model_ckpt='caption_0914_1947' # 预训练的模型

    # 数据
    vis = Visualizer(env=opt.env)
    dataloader = get_dataloader(opt)
    _data = dataloader.dataset._data
    word2ix, ix2word = _data['word2ix'], _data['ix2word']

    # 模型
    model = CaptionModel(opt, word2ix, ix2word)
    if opt.model_ckpt:
        model.load(opt.model_ckpt)
    optimizer = model.get_optimizer(opt.lr)
    criterion = t.nn.CrossEntropyLoss()

    model.to(device)

    # 统计
    loss_meter = meter.AverageValueMeter()

    for epoch in range(opt.epoch):
        loss_meter.reset()
        for ii, (imgs, (captions, lengths),
                 indexes) in tqdm.tqdm(enumerate(dataloader)):
            # 训练
            optimizer.zero_grad()
            imgs = imgs.to(device)
            captions = captions.to(device)
            input_captions = captions[:-1]
            target_captions = pack_padded_sequence(captions, lengths)[0]
            score, _ = model(imgs, input_captions, lengths)
            loss = criterion(score, target_captions)
            loss.backward()
            optimizer.step()
            loss_meter.add(loss.item())

            # 可视化
            if (ii + 1) % opt.plot_every == 0:
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()

                vis.plot('loss', loss_meter.value()[0])

                # 可视化原始图片 + 可视化人工的描述语句
                raw_img = _data['ix2id'][indexes[0]]
                img_path = opt.img_path + raw_img
                raw_img = Image.open(img_path).convert('RGB')
                raw_img = tv.transforms.ToTensor()(raw_img)

                raw_caption = captions.data[:, 0]
                raw_caption = ''.join(
                    [_data['ix2word'][ii] for ii in raw_caption])
                vis.text(raw_caption, u'raw_caption')
                vis.img('raw', raw_img, caption=raw_caption)

                # 可视化网络生成的描述语句
                results = model.generate(imgs.data[0])
                vis.text('</br>'.join(results), u'caption')
        model.save()
Beispiel #6
0
    train_dataset = SampleDataset(train_descriptions, train_img_features,
                                  model_info['wordtoidx'],
                                  model_info['max_length'])

    train_loader = DataLoader(train_dataset, batch_size, collate_fn=my_collate)

    caption_model = CaptionModel(model_info['vocab_size'],
                                 embedding_dim,
                                 hidden_size=hidden_size,
                                 embedding_matrix=embedding_matrix,
                                 embedding_train=True)

    init_weights(caption_model, embedding_pretrained=True)

    caption_model.to(device)

    # we will ignore the pad token in true target set
    criterion = nn.CrossEntropyLoss(ignore_index=0)

    optimizer = torch.optim.Adam(caption_model.parameters(), lr=0.01)

    clip = 1
    start = time()
    print(f'Training...')
    for i in tqdm(range(EPOCHS * 6)):

        loss = train(caption_model, train_loader, optimizer, criterion, clip,
                     model_info['vocab_size'])
        print(f'loss = {loss}')