Beispiel #1
0
    #print('utils.py, class AverageMeter()')

    if not os.path.exists('models'):
        os.mkdir('models')



    epoch = 0
    for epoch in range(int(iterations)):
    # while i < int(iterations):
        for sample in tqdm(data_loader):
            images, labels = sample['images'].to(device), sample['labels'].to(device)
            logits = model(images)       
            labels = labels.view(int(bs)*int(seq_length))  ##??
            loss = criterion(logits, labels)
            optimizer.zero_grad()
            loss.backward() 
            losses.update(loss.item(), images.size(0))
            optimizer.step()

            

            print('epoch: {}\tLoss: {loss.val:.4f} ({loss.avg:.4f})'.format(epoch, loss=losses))
            epoch += 1
            if epoch % it_save == 0:
                torch.save({'optimizer_state_dict': optimizer.state_dict(),
                            'model_state_dict': model.state_dict()}, 'models/swingnet_{}.pth.tar'.format(epoch))
            if epoch == iterations:
                break

        experiment.log_metrics("train_loss", losses, step=epoch)
Beispiel #2
0
    losses = AverageMeter()

    if not os.path.exists("models"):
        os.mkdir("models")

    i = 0
    while i < iterations:
        for sample in data_loader:
            images, labels = sample["images"].cuda(), sample["labels"].cuda()
            logits = model(images)
            labels = labels.view(bs * seq_length)
            loss = criterion(logits, labels)
            optimizer.zero_grad()
            loss.backward()
            losses.update(loss.item(), images.size(0))
            optimizer.step()
            print(
                "Iteration: {}\tLoss: {loss.val:.4f} ({loss.avg:.4f})".format(
                    i, loss=losses))
            i += 1
            if i % it_save == 0:
                torch.save(
                    {
                        "optimizer_state_dict": optimizer.state_dict(),
                        "model_state_dict": model.state_dict(),
                    },
                    "models/swingnet_{}.pth.tar".format(i),
                )
            if i == iterations:
                break
    if not os.path.exists('models'):
        os.mkdir('models')

    i = 0
    while i < iterations:

        for sample in data_loader:

            images, labels = sample['images'].cuda(), sample['labels'].cuda()

            logits = model(images)
            labels = labels.view(bs * seq_length)
            loss = criterion(logits, labels)
            optimizer.zero_grad()
            loss.backward()
            losses.update(loss.item(), images.size(0))
            optimizer.step()
            print(
                'Iteration: {}\tLoss: {loss.val:.4f} ({loss.avg:.4f})'.format(
                    i, loss=losses))
            i += 1
            if i % it_save == 0:
                torch.save(
                    {
                        'optimizer_state_dict': optimizer.state_dict(),
                        'model_state_dict': model.state_dict()
                    }, 'models/{}_{}.pth.tar'.format(version_name, i))
            if i == iterations:
                break
                plt.ylim([np.log(min(np.min(list_loss['loss']), np.min(list_loss['soft']), np.min(list_loss['count']))), np.log(list_loss['loss'][min(500,max(0,i-100))])])

                plt.subplot(1, 2, 2)
                plt.hist(preds.reshape(-1).cpu().data.numpy())
                plt.ylim([0,50])

                plt.savefig('loss_' + version_name + '.png')
                plt.close('all')


            optimizer.zero_grad()
            loss.backward()
            losses.update(loss.item(), images.size(0))
            optimizer.step()
            print('Iteration: {}\tLoss: {loss.val:.4f} ({loss.avg:.4f})'.format(i, loss=losses))
            i += 1
            if i % it_save == 0:
                torch.save({'optimizer_state_dict': optimizer.state_dict(),
                            'model_state_dict': model.state_dict()}, 'models/{}_{}.pth.tar'.format(version_name, i))
            if i == iterations:
                break

    # Run evaluation
    import os
    os.system("python eval.py " + version_name)