Beispiel #1
0
def main():
    dataset = Data('data')
    learning_rate = CustomSchedule(embedding_dim)
    optimizer = tf.keras.optimizers.Adam(learning_rate,
                                         beta_1=0.9,
                                         beta_2=0.98,
                                         epsilon=1e-9)

    mt = MusicTransformerDecoder(embedding_dim=embedding_dim,
                                 vocab_size=vocab_size,
                                 num_layer=num_layer,
                                 max_seq=max_seq,
                                 dropout=0.2,
                                 loader_path=load_path)

    mt.compile(optimizer=optimizer, loss=loss_function)

    for e in range(epochs):
        for b in range(len(dataset.files) // batch_size):
            try:
                batch_x, batch_y = dataset.slide_seq2seq_batch(
                    batch_size, max_seq)
            except:
                continue
            result_metrics = mt.train_on_batch(batch_x, batch_y, training=True)
            if b % 100 == 0:
                mt.save(save_path)

                print('\n====================================================')
                print('Epoch/Batch: {}/{}'.format(e, b))
                print('Train >>>> Loss: {:6.6}'.format(result_metrics[0]))
Beispiel #2
0
def main():
    load_path = 'result/result_model'
    length = 2048
    save_path = 'generated.mid'

    mt = MusicTransformerDecoder(loader_path=load_path)
    inputs = encode_midi('Midiset/test.mid')
    result = mt.generate(inputs[:20], length=length)
    decode_midi(result, file_path=save_path)
def main():

    learning_rate = CustomSchedule(embedding_dim)
    optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, 
                                        epsilon=1e-9)

    mt = MusicTransformerDecoder(
                embedding_dim=embedding_dim,
                vocab_size=vocab_size,
                num_layer=num_layer,
                max_seq=max_seq,
                dropout=0.2,
                loader_path=load_path)
                
    mt.compile(optimizer=optimizer, loss=loss_function)

    dataset = Data('dataset/processed')

    train(dataset, mt)
Beispiel #4
0
from model import MusicTransformerDecoder
import datetime
from processor import decode_midi, encode_midi


max_seq = 1024
load_path = '.\\saved_model'
length = 1024
save_path= 'generated.mid'

mt = MusicTransformerDecoder(loader_path=load_path)

inputs = encode_midi('dataset/midi/test.mid')

result = mt.generate(inputs[:20], length=length, vis_enable=True)


decode_midi(result, file_path=save_path)

Beispiel #5
0
# load data
dataset = Data('dataset/processed')
print(dataset)


# load model
learning_rate = callback.CustomSchedule(par.embedding_dim) if l_r is None else l_r
opt = Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)


# define model
mt = MusicTransformerDecoder(
            embedding_dim=256,
            vocab_size=par.vocab_size,
            num_layer=num_layer,
            max_seq=max_seq,
            dropout=0.2,
            debug=False, loader_path=load_path)
mt.compile(optimizer=opt, loss=callback.transformer_dist_train_loss)


# define tensorboard writer
current_time = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
train_log_dir = 'logs/mt_decoder/'+current_time+'/train'
eval_log_dir = 'logs/mt_decoder/'+current_time+'/eval'
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
eval_summary_writer = tf.summary.create_file_writer(eval_log_dir)


# Train Start
gen_log_dir = 'logs/mt_decoder/generate_' + current_time + '/generate'
gen_summary_writer = tf.summary.create_file_writer(gen_log_dir)

if mode == 'enc-dec':
    print(">> generate with original seq2seq wise... beam size is {}".format(
        beam))
    mt = MusicTransformer(embedding_dim=256,
                          vocab_size=par.vocab_size,
                          num_layer=6,
                          max_seq=2048,
                          dropout=0.2,
                          debug=False,
                          loader_path=load_path)
else:
    print(">> generate with decoder wise... beam size is {}".format(beam))
    mt = MusicTransformerDecoder(loader_path=load_path, max_seq=max_seq)

inputs = encode_midi(midi_path)

with gen_summary_writer.as_default():
    result = mt.generate(inputs[:crop_length],
                         beam=beam,
                         length=length,
                         tf_board=True)

for i in result:
    print(i)

if mode == 'enc-dec':
    decode_midi(list(inputs[-1 * par.max_seq:]) + list(result[1:]),
                file_path=save_path)
def train(num_layers, length, rate, batch, epochs, load_path, save_path,
          preproc_dir):
    if rate is None:
        rate = callback.CustomSchedule(par.embedding_dim)
    preproc_dir = Path(preproc_dir)

    model = MusicTransformerDecoder(
        embedding_dim=256,
        vocab_size=par.vocab_size,
        num_layer=num_layers,
        max_seq=length,
        dropout=0.2,
        debug=False,
        loader_path=load_path,
    )
    model.compile(
        optimizer=Adam(rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9),
        loss=callback.transformer_dist_train_loss,
    )

    time = datetime.datetime.now().strftime("%Y-%m-%d-%H:%M:%S")
    train_summary_writer = tf.summary.create_file_writer(
        f"logs/mt_decoder/{time}/train")
    eval_summary_writer = tf.summary.create_file_writer(
        f"logs/mt_decoder/{time}/eval")

    dataset = Data(preproc_dir)

    idx = 0
    with click.progressbar(length=epochs) as prog:
        for e in prog:
            model.reset_metrics()
            with click.progressbar(length=len(dataset.files) //
                                   batch) as prog2:
                for b in prog2:
                    batch_x, batch_y = dataset.slide_seq2seq_batch(
                        batch, length)
                    loss, acc = model.train_on_batch(batch_x, batch_y)

                    if b % 100 == 0:
                        eval_x, eval_y = dataset.slide_seq2seq_batch(
                            batch, length, "eval")
                        (eloss, eacc), weights = model.evaluate(eval_x, eval_y)
                        if save_path is not None:
                            model.save(save_path)

                        with train_summary_writer.as_default():
                            if b == 0:
                                tf.summary.histogram("target_analysis",
                                                     batch_y,
                                                     step=e)
                                tf.summary.histogram("source_analysis",
                                                     batch_x,
                                                     step=e)

                            tf.summary.scalar("loss", loss, step=idx)
                            tf.summary.scalar("accuracy", acc, step=idx)

                        with eval_summary_writer.as_default():
                            if b == 0:
                                model.sanity_check(eval_x, eval_y, step=e)

                            tf.summary.scalar("loss", eloss, step=idx)
                            tf.summary.scalar("accuracy", eacc, step=idx)

                            for i, weight in enumerate(weights):
                                with tf.name_scope("layer_%d" % i):
                                    with tf.name_scope("w"):
                                        utils.attention_image_summary(weight,
                                                                      step=idx)

                        print(
                            f"Loss: {loss:6.6} (e: {eloss:6.6}), Accuracy: {acc} (e: {eacc})"
                        )
                        idx += 1
Beispiel #8
0
def train(input_path, save_path, l_r=None, batch_size=2,
          max_seq=1024, epochs=100,
          load_path=None, num_layer=6, log_dir='/pfs/out/logs'):
    # load data
    dataset = Data(input_path)
    print('dataset', dataset)


    # load model
    learning_rate = callback.CustomSchedule(par.embedding_dim) if l_r is None else l_r
    opt = Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)


    # define model
    mt = MusicTransformerDecoder(
                embedding_dim=256,
                vocab_size=par.vocab_size,
                num_layer=num_layer,
                max_seq=max_seq,
                dropout=0.2,
                debug=False, loader_path=load_path)
    mt.compile(optimizer=opt, loss=callback.transformer_dist_train_loss)


    # define tensorboard writer
    current_time = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
    train_log_dir = '{log_dir}/{time}/train'.format(log_dir=log_dir, time=current_time)
    eval_log_dir = '{log_dir}/{time}/eval'.format(log_dir=log_dir, time=current_time)
    train_summary_writer = tf.summary.create_file_writer(train_log_dir)
    eval_summary_writer = tf.summary.create_file_writer(eval_log_dir)


    # Train Start
    idx = 0
    batchings = len(dataset.files) // batch_size
    how_often_to_print = 50
    for e in tqdm(range(epochs), desc='epochs'):
        mt.reset_metrics()
        for b in tqdm(range(batchings), desc='batches'):
            try:
                batch_x, batch_y = dataset.slide_seq2seq_batch(batch_size, max_seq)
            except:
                continue
            result_metrics = mt.train_on_batch(batch_x, batch_y)
            if b % how_often_to_print == 0:
                eval_x, eval_y = dataset.slide_seq2seq_batch(batch_size, max_seq, 'eval')
                eval_result_metrics, weights = mt.evaluate(eval_x, eval_y)
                mt.save(save_path)
                with train_summary_writer.as_default():
                    if b == 0:
                        tf.summary.histogram("target_analysis", batch_y, step=e)
                        tf.summary.histogram("source_analysis", batch_x, step=e)

                    tf.summary.scalar('loss', result_metrics[0], step=idx)
                    tf.summary.scalar('accuracy', result_metrics[1], step=idx)

                with eval_summary_writer.as_default():
                    if b == 0:
                        mt.sanity_check(eval_x, eval_y, step=e)

                    tf.summary.scalar('loss', eval_result_metrics[0], step=idx)
                    tf.summary.scalar('accuracy', eval_result_metrics[1], step=idx)
                    for i, weight in enumerate(weights):
                        with tf.name_scope("layer_%d" % i):
                            with tf.name_scope("w"):
                                utils.attention_image_summary(weight, step=idx)
                    # for i, weight in enumerate(weights):
                    #     with tf.name_scope("layer_%d" % i):
                    #         with tf.name_scope("_w0"):
                    #             utils.attention_image_summary(weight[0])
                    #         with tf.name_scope("_w1"):
                    #             utils.attention_image_summary(weight[1])
                idx += 1
                print('\n====================================================')
                print('Epoch/Batch: {}/{}'.format(e, b))
                print('Train >>>> Loss: {:6.6}, Accuracy: {}'.format(result_metrics[0], result_metrics[1]))
                print('Eval >>>> Loss: {:6.6}, Accuracy: {}'.format(eval_result_metrics[0], eval_result_metrics[1]))