Beispiel #1
0
def main():
    train_loader = Data(train_path, shuffle=True, split=0.2)
    pca = train_loader.dataloading(batch_size=batch_size,
                                   pca=PCA(n_components=pca_components))
    test_loader = Data(test_path, shuffle=False, test=True)
    test_loader.dataloading(pca=pca)

    model = NN(in_dim=pca_components + 1,
               n_cls=3,
               neurons=[256],
               lr=lr,
               hidden_activation='sigmoid',
               load_weight=False,
               save_weight=False)
    info = {
        'train_loss': [],
        'train_acc': [],
        'val_loss': [],
        'val_acc': [],
        'EPOCHS': EPOCHS
    }
    for epoch in range(EPOCHS):
        cache = np.zeros(4)
        itr = 0
        for train_data in train_loader:
            x_train, y_train, x_val, y_val = train_data
            y_train = to_onehot(y_train, 3)
            y_val = to_onehot(y_val, 3)
            train_loss, train_acc = model.train(x_train, y_train)
            val_loss, val_acc, pred = model.predict(x_val, y_val)
            cache[0] += train_loss
            cache[1] += train_acc
            cache[2] += val_loss
            cache[3] += val_acc
            itr += 1
        cache /= itr
        info['train_loss'].append(cache[0])
        info['train_acc'].append(cache[1])
        info['val_loss'].append(cache[2])
        info['val_acc'].append(cache[3])
        print(
            'EPOCH:{:05d}/{:05d}  train_loss: {:.5f}  train_acc: {:.4f}  val_loss: {:.5f}  val_acc: {:.4f}'
            .format(epoch + 1, EPOCHS, *cache.tolist()))
    plot_info(**info)
    train_loader.set_batch_size(2000)
    for train_data in train_loader:
        x_train, y_train, x_val, y_val = train_data
        y_train = to_onehot(y_train, 3)
        plot_decision_region(x_train,
                             y_train,
                             model,
                             train_loader.CLASSES,
                             title='training')

    for test_data in test_loader:
        x_test, y_test = test_data
        y_test = to_onehot(y_test, 3)
        plot_decision_region(x_test,
                             y_test,
                             model,
                             train_loader.CLASSES,
                             title='testing')
        test_loss, test_acc, pred = model.predict(x_test, y_test)
    print('test_loss: {:.5f} test_acc: {:.4f}'.format(test_loss, test_acc))
Beispiel #2
0
# Plot the training points
plt.scatter(X[:, 0], X[:, 1], c=t.flatten())
plt.xlabel('Petal length')
plt.ylabel('Petal width')
plt.title('Real Data', fontsize=16)
plt.show()

# Build neural network
model = NN()
model.add_layer(units=10, activation=np.tanh, initialization=np.random.normal)
model.add_layer(units=5, activation=np.tanh, initialization=np.random.normal)
model.add_layer(units=2, activation=np.tanh, initialization=np.random.normal)
model.add_layer(1, activation=model.sigmoid)

model.train(X, t, iterations=5000, learn_rate=0.0001)  # 5000
prediction = model.predict(X)

# Plot error
plt.plot(model.history['epoch'],
         model.history['error_train'],
         label='Training error')
plt.xlabel('Epoch')
plt.ylabel('Error')
plt.legend()
plt.show()

# Plot prediction
plt.scatter(X[:, 0], X[:, 1], c=np.round(prediction, 0).flatten())
plt.xlabel('Petal length')
plt.ylabel('Petal width')