Beispiel #1
0
                     padding_idx=hparams.padding_idx,
                     use_memory_mask=hparams.use_memory_mask,
                     )
    model = model.cuda()
    #model = DataParallelFix(model)

    optimizer = optim.Adam(model.parameters(),
                           lr=hparams.initial_learning_rate, betas=(
                               hparams.adam_beta1, hparams.adam_beta2),
                           weight_decay=hparams.weight_decay)

    # Load checkpoint
    if checkpoint_path:
        print("Load checkpoint from: {}".format(checkpoint_path))
        checkpoint = torch.load(checkpoint_path)
        model.load_state_dict(checkpoint["state_dict"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        try:
            global_step = int(checkpoint["global_step"])
            global_epoch = int(checkpoint["global_epoch"])
        except:
            # TODO
            pass

    # Setup tensorboard logger
    tensorboard_logger.configure(log_path)

    #print(hparams_debug_string())

    # Train!
    try:
    )

    vocoder_model = WaveLSTM(
        n_vocab=257,
        embedding_dim=256,
        mel_dim=hparams.num_mels,
        linear_dim=hparams.num_freq,
        r=hparams.outputs_per_step,
        padding_idx=hparams.padding_idx,
        use_memory_mask=hparams.use_memory_mask,
    )

    #checkpoint = torch.load(checkpoint_path)
    #checkpoints_dir = os.path.dirname(checkpoint_path)

    acousticmodel.load_state_dict(checkpoint_acousticmodel["state_dict"])
    acousticmodel.decoder.max_decoder_steps = max_decoder_steps

    os.makedirs(dst_dir, exist_ok=True)

    vocoder_checkpoint_path = 'exp/exp_vocoding_bsz4seqlen8_cloneofwavernn/checkpoints/checkpoint_step1400000.pth'
    vocoder_model.load_state_dict(checkpoint_vocoder["state_dict"])

    with open(text_list_file_path, "rb") as f:
        lines = f.readlines()
        for idx, line in enumerate(lines):
            fname = line.decode("utf-8").split()[0].zfill(8)
            cmd = 'cp vox/wav/' + fname + '.wav ' + dst_dir + '/' + fname + '_original.wav'
            print(cmd)
            os.system(cmd)
            text = ' '.join(k for k in line.decode("utf-8").split()[1:])