Beispiel #1
0
def main():
    dataloader = IMDB()
    model = VRAE(dataloader.word2idx)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    for epoch in range(args.num_epoch):
        dataloader.update_word_dropout()
        dataloader.shuffle()
        print("\nData Shuffled", end='\n\n')
        for i, (seq, seq_dropped,
                seq_len) in enumerate(dataloader.next_batch()):
            log = model.train_session(sess, seq, seq_dropped, seq_len)
            if i % args.display_loss_step == 0:
                print("Step %d | [%d/%d] | [%d/%d]" %
                      (log['step'], epoch + 1, args.num_epoch, i,
                       len(dataloader._X) // args.batch_size),
                      end='')
                """
                if args.mutinfo_loss:
                    print("\n\tnll_loss:%.1f | kl_w:%.3f | kl_loss:%.2f | temper:%.2f | mutinfo_loss:%.2f \n" % (
                        log['nll_loss'], log['kl_w'], log['kl_loss'], log['temperature'], log['mutinfo_loss']))
                else:
                """
                print(" | nll_loss:%.1f | kl_w:%.3f | kl_loss:%.2f \n" %
                      (log['nll_loss'], log['kl_w'], log['kl_loss']))
        model.reconstruct(sess, seq[-1], seq_dropped[-1])
        model.generate(sess)

        save_path = model.saver.save(sess, model.model_path)
        print("Model saved in file: %s" % save_path)
Beispiel #2
0
def main():
    dataloader = IMDB()
    params = {
        'vocab_size': len(dataloader.word2idx),
        'word2idx': dataloader.word2idx,
        'idx2word': dataloader.idx2word,
    }
    print('Vocab Size:', params['vocab_size'])
    model = VRAE(params)
    saver = tf.train.Saver()

    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    sess.run(tf.global_variables_initializer())

    for epoch in range(args.num_epoch):
        dataloader.update_word_dropout()
        print("\nWord Dropout")
        dataloader.shuffle()
        print("Data Shuffled", end='\n\n')
        for i, (enc_inp, dec_inp,
                dec_out) in enumerate(dataloader.next_batch()):
            log = model.train_session(sess, enc_inp, dec_inp, dec_out)
            if i % args.display_loss_step == 0:
                print("Step %d | [%d/%d] | [%d/%d]" %
                      (log['step'], epoch + 1, args.num_epoch, i,
                       len(dataloader.enc_inp) // args.batch_size),
                      end='')
                print(" | nll_loss:%.1f | kl_w:%.3f | kl_loss:%.2f \n" %
                      (log['nll_loss'], log['kl_w'], log['kl_loss']))

        model.generate(sess)
        model.reconstruct(sess, enc_inp[-1], dec_inp[-1])
        model.customized_reconstruct(
            sess, 'i love this film and i think it is one of the best films')
        model.customized_reconstruct(
            sess,
            'this movie is a waste of time and there is no point to watch it')

        save_path = saver.save(sess, './saved/vrae.ckpt')
        print("Model saved in file: %s" % save_path)
Beispiel #3
0
def main():
    dataloader = IMDB()
    model = VRAE(dataloader.word2idx)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    for epoch in range(args.num_epoch):
        dataloader.update_word_dropout()
        dataloader.shuffle()
        print("\nData Shuffled", end='\n\n')
        for i, (seq, seq_dropped, seq_len) in enumerate(dataloader.next_batch()):
            log = model.train_session(sess, seq, seq_dropped, seq_len)
            if i % args.display_loss_step == 0:
                bar = '[%d/%d] | [%d/%d] | nll_loss: %.1f | kl_w: %.3f | kl_loss: %.1f'
                vars = (epoch+1, args.num_epoch, i+1, len(dataloader._X)//args.batch_size, log['nll_loss'],
                        log['kl_w'], log['kl_loss'])
                print(bar % vars)
            if i % args.display_text_step == 0:
                model.reconstruct(sess, seq[-1], seq_dropped[-1])
                model.generate(sess)