Beispiel #1
0
    def test_get_next_image(self):
        img = imread(self.test_path_image, IMREAD_COLOR)
        img = cvtColor(img, COLOR_BGR2RGB)
        img_resized = resize(img, (224, 224))
        img_final = img_resized / 255.0

        img_actual = modelUtils.get_image_at_index([self.test_path_image], 0)

        assert_allclose(img_actual, img_final)
 def test_create_training_data(self):
     expected_x_value = modelUtils.get_image_at_index(
         [self.test_path_image], 0)
     expected_y_value = 0
     makeDataset.create_training_data(1, 'x_data_test', 'y_data_test')
     actual_x_value = np.load('x_data_test.npy')[0] / 255.0
     actual_y_value = np.load('y_data_test.npy')[0]
     assert_allclose(expected_x_value, actual_x_value)
     self.assertEqual(expected_y_value, actual_y_value)
Beispiel #3
0
 def test_generator(self):
     expected = ([modelUtils.get_image_at_index([self.test_path_image],
                                                0)], 0)
     for batch in modelUtils.generator(array([self.test_path_image]),
                                       array([self.test_path_descriptions]),
                                       1):
         actual_image, actual_label = batch
         expected_image, expected_label = expected
         self.assertEqual(len(actual_image), len(expected_image))
         self.assertEqual(actual_label, expected_label)
         break
Beispiel #4
0
    else:
        thisplot[0].set_color('red')


num_rows = 5
num_cols = 3
num_images = num_rows * num_cols
test_images = []
test_labels = []

for i in range(num_images):
    index = int(random.choice(len(X_file_names), 1))

    file_name = os.path.join(DATADIR, X_file_names[index])
    print(file_name)
    image = get_image_at_index(np.array([file_name]), 0)
    test_images.append(image)
    test_labels.append(get_label(os.path.join(DATADESC, y_file_names[index])))

model = load_model('resmodel')

predictions = model.predict(np.array(test_images))

plt.figure(figsize=(2 * 2 * num_cols, 2 * num_rows))
for i in range(num_images):
    plt.subplot(num_rows, 2 * num_cols, 2 * i + 1)
    plot_image(i, predictions, test_labels, test_images)
    plt.subplot(num_rows, 2 * num_cols, 2 * i + 2)
    plot_value_array(i, predictions, test_labels)
plt.show()
Beispiel #5
0
X_file_names = np.array(os.listdir(DATADIR))
y_file_names = np.array(os.listdir(DATADESC))

num_rows = 5
num_cols = 3
num_images = num_rows * num_cols
images = []
images_aug = []

for i in range(num_images):
    index = int(random.choice(len(X_file_names), 1))
    #test_images.append(cv2.resize(cv2.imread(os.path.join(DATADIR,X_file_names[index])),(224,224)))
    file_name = os.path.join(DATADIR, X_file_names[index])
    print(file_name)
    image = modelUtils.get_image_at_index(np.array([file_name]), 0)
    image_aug = modelUtils.get_image_at_index_with_transform(
        np.array([file_name]), 0)
    images.append(image)
    images_aug.append(image_aug)

plt.figure(figsize=(2 * 2 * num_cols, 2 * num_rows))
for i in range(num_images):
    plt.subplot(num_rows, 2 * num_cols, 2 * i + 1)
    plt.imshow(images[i])
    plt.xticks([])
    plt.yticks([])
    plt.subplot(num_rows, 2 * num_cols, 2 * i + 2)
    plt.imshow(images_aug[i])
    plt.xticks([])
    plt.yticks([])