Beispiel #1
0
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(BasicBlock, self).__init__()
     self.conv1 = conv3x3(inplanes, planes, stride)
     self.bn1 = mynn.Norm2d(planes)
     self.relu = nn.ReLU(inplace=True)
     self.conv2 = conv3x3(planes, planes)
     self.bn2 = mynn.Norm2d(planes)
     self.downsample = downsample
     self.stride = stride
Beispiel #2
0
 def __init__(self, inplanes, planes, groups, reduction, stride=1,
              downsample=None):
     super(SEResNetBottleneck, self).__init__()
     self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False,
                            stride=stride)
     self.bn1 = mynn.Norm2d(planes)
     self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1,
                            groups=groups, bias=False)
     self.bn2 = mynn.Norm2d(planes)
     self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
     self.bn3 = mynn.Norm2d(planes * 4)
     self.relu = nn.ReLU(inplace=True)
     self.se_module = SEModule(planes * 4, reduction=reduction)
     self.downsample = downsample
     self.stride = stride
Beispiel #3
0
 def __init__(self, inplanes, planes, groups, reduction, stride=1,
              downsample=None, base_width=4):
     super(SEResNeXtBottleneck, self).__init__()
     width = math.floor(planes * (base_width / 64)) * groups
     self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False,
                            stride=1)
     self.bn1 = mynn.Norm2d(width)
     self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride,
                            padding=1, groups=groups, bias=False)
     self.bn2 = mynn.Norm2d(width)
     self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False)
     self.bn3 = mynn.Norm2d(planes * 4)
     self.relu = nn.ReLU(inplace=True)
     self.se_module = SEModule(planes * 4, reduction=reduction)
     self.downsample = downsample
     self.stride = stride
Beispiel #4
0
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = mynn.Norm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode='fan_out',
                                        nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
Beispiel #5
0
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(Bottleneck, self).__init__()
     self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
     self.bn1 = mynn.Norm2d(planes)
     self.conv2 = nn.Conv2d(planes,
                            planes,
                            kernel_size=3,
                            stride=stride,
                            padding=1,
                            bias=False)
     self.bn2 = mynn.Norm2d(planes)
     self.conv3 = nn.Conv2d(planes,
                            planes * self.expansion,
                            kernel_size=1,
                            bias=False)
     self.bn3 = mynn.Norm2d(planes * self.expansion)
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
Beispiel #6
0
    def _make_layer(self, block, planes, blocks, groups, reduction, stride=1,
                    downsample_kernel_size=1, downsample_padding=0):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=downsample_kernel_size, stride=stride,
                          padding=downsample_padding, bias=False),
                mynn.Norm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, groups, reduction, stride,
                            downsample))
        self.inplanes = planes * block.expansion
        for index in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups, reduction))

        return nn.Sequential(*layers)
Beispiel #7
0
 def __init__(self, block, layers, groups, reduction, dropout_p=0.2,
              inplanes=128, input_3x3=True, downsample_kernel_size=3,
              downsample_padding=1, num_classes=1000):
     """
     Parameters
     ----------
     block (nn.Module): Bottleneck class.
         - For SENet154: SEBottleneck
         - For SE-ResNet models: SEResNetBottleneck
         - For SE-ResNeXt models:  SEResNeXtBottleneck
     layers (list of ints): Number of residual blocks for 4 layers of the
         deeplab_v3plus (layer1...layer4).
     groups (int): Number of groups for the 3x3 convolution in each
         bottleneck block.
         - For SENet154: 64
         - For SE-ResNet models: 1
         - For SE-ResNeXt models:  32
     reduction (int): Reduction ratio for Squeeze-and-Excitation modules.
         - For all models: 16
     dropout_p (float or None): Drop probability for the Dropout layer.
         If `None` the Dropout layer is not used.
         - For SENet154: 0.2
         - For SE-ResNet models: None
         - For SE-ResNeXt models: None
     inplanes (int):  Number of input channels for layer1.
         - For SENet154: 128
         - For SE-ResNet models: 64
         - For SE-ResNeXt models: 64
     input_3x3 (bool): If `True`, use three 3x3 convolutions instead of
         a single 7x7 convolution in layer0.
         - For SENet154: True
         - For SE-ResNet models: False
         - For SE-ResNeXt models: False
     downsample_kernel_size (int): Kernel size for downsampling convolutions
         in layer2, layer3 and layer4.
         - For SENet154: 3
         - For SE-ResNet models: 1
         - For SE-ResNeXt models: 1
     downsample_padding (int): Padding for downsampling convolutions in
         layer2, layer3 and layer4.
         - For SENet154: 1
         - For SE-ResNet models: 0
         - For SE-ResNeXt models: 0
     num_classes (int): Number of outputs in `last_linear` layer.
         - For all models: 1000
     """
     super(SENet, self).__init__()
     self.inplanes = inplanes
     if input_3x3:
         layer0_modules = [
             ('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1,
                                 bias=False)),
             ('bn1', mynn.Norm2d(64)),
             ('relu1', nn.ReLU(inplace=True)),
             ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1,
                                 bias=False)),
             ('bn2', mynn.Norm2d(64)),
             ('relu2', nn.ReLU(inplace=True)),
             ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1,
                                 bias=False)),
             ('bn3', mynn.Norm2d(inplanes)),
             ('relu3', nn.ReLU(inplace=True)),
         ]
     else:
         layer0_modules = [
             ('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2,
                                 padding=3, bias=False)),
             ('bn1', mynn.Norm2d(inplanes)),
             ('relu1', nn.ReLU(inplace=True)),
         ]
     # To preserve compatibility with Caffe weights `ceil_mode=True`
     # is used instead of `padding=1`.
     layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2,
                                                 ceil_mode=True)))
     self.layer0 = nn.Sequential(OrderedDict(layer0_modules))
     self.layer1 = self._make_layer(
         block,
         planes=64,
         blocks=layers[0],
         groups=groups,
         reduction=reduction,
         downsample_kernel_size=1,
         downsample_padding=0
     )
     self.layer2 = self._make_layer(
         block,
         planes=128,
         blocks=layers[1],
         stride=2,
         groups=groups,
         reduction=reduction,
         downsample_kernel_size=downsample_kernel_size,
         downsample_padding=downsample_padding
     )
     self.layer3 = self._make_layer(
         block,
         planes=256,
         blocks=layers[2],
         stride=1,
         groups=groups,
         reduction=reduction,
         downsample_kernel_size=downsample_kernel_size,
         downsample_padding=downsample_padding
     )
     self.layer4 = self._make_layer(
         block,
         planes=512,
         blocks=layers[3],
         stride=1,
         groups=groups,
         reduction=reduction,
         downsample_kernel_size=downsample_kernel_size,
         downsample_padding=downsample_padding
     )
     self.avg_pool = nn.AvgPool2d(7, stride=1)
     self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None
     self.last_linear = nn.Linear(512 * block.expansion, num_classes)
Beispiel #8
0
def bnrelu(channels):
    """
    Single Layer BN and Relui
    """
    return nn.Sequential(mynn.Norm2d(channels), nn.ReLU(inplace=True))