else:
    site_coords = [args.coords[0], args.coords[1]]

if args.pnames_file is not None:
    with open(args.pnames_file) as f:
        pnames_ens = f.read().splitlines()
else:
    pnames_ens = ['nue_tree', 'gdd_crit']  # 'leafcn', 'slatop_decid']

ndim = len(pnames_ens)
nens = args.nens

out_prefix = args.out_prefix

# create model object
model = models.MyModel()

# Desired outputs
#myoutvars = ['gpp', 'lai', 'npp']
print('Generating ensemble')
model.generate_ensemble(nens,
                        pnames_ens,
                        fname=args.psam_file,
                        normalized=False)
assert (model.parm_ensemble.shape[0] == nens)
assert (model.parm_ensemble.shape[1] == ndim)

# Daily output
# model.run_selm(spinup_cycles=4,
#                lon_bounds=[-82, -80], lat_bounds=[40, 42],
#                prefix='regional', pft=0, use_MPI=False)
Beispiel #2
0
print("Dimensions #######################")
for ikey in dataset.dimensions.keys():  # time(360),lon(5),lat(7)
    print(dataset.dimensions[ikey].name + ", size " +
          str(dataset.dimensions[ikey].size))  # 7

print("Variables #######################")
for ikey in dataset.variables.keys():
    print(dataset.variables[ikey].name + ", size " +
          str(dataset.variables[ikey].shape))

lons = dataset.variables['lon'][:] - 360.  # .shape
lats = dataset.variables['lat'][:]  # .shape


# create model object
model = selm.MyModel()
qois = model.outvars
qois.remove('ctcpools')


years = 1980 + dataset.variables['time'][:] / 365

for qoi in qois:
    qoi_var = utils.get_qoi_regave(dataset, qoi)

    fig = plt.figure(figsize=(12, 6))
    plt.plot(years, qoi_var.T)

    plt.savefig(qoi+'_ens.png')
    plt.clf()