def __init__(self, batchNorm=False, other={}): super(Regressor, self).__init__() self.other = other self.deconv1 = model_utils.conv(batchNorm, 128, 128, k=3, stride=1, pad=1) self.deconv2 = model_utils.conv(batchNorm, 128, 128, k=3, stride=1, pad=1) self.deconv3 = model_utils.deconv(128, 64) self.est_normal= self._make_output(64, 3, k=3, stride=1, pad=1) self.other = other
def __init__(self, conv_dim=64, init_zero_weights=False): super(CycleGenerator, self).__init__() # Define the encoder part of the generator (that extracts features from the input image) self.conv1 = conv(3, conv_dim, 5, init_zero_weights=init_zero_weights) self.conv2 = conv(conv_dim, conv_dim * 2, 5) # Define the transformation part of the generator self.resnet_block = ResnetBlock(conv_dim * 2) # Define the decoder part of the generator (that builds up the output image from features) self.upconv1 = upconv(conv_dim * 2, conv_dim, 5) self.upconv2 = upconv(conv_dim, 3, 5, batch_norm=False)
def __init__(self, batchNorm, c_in, c_out=256): super(FeatExtractor, self).__init__() self.conv1 = model_utils.conv(batchNorm, c_in, 64, k=3, stride=2, pad=1) self.conv2 = model_utils.conv(batchNorm, 64, 128, k=3, stride=2, pad=1) self.conv3 = model_utils.conv(batchNorm, 128, 128, k=3, stride=1, pad=1) self.conv4 = model_utils.conv(batchNorm, 128, 128, k=3, stride=2, pad=1) self.conv5 = model_utils.conv(batchNorm, 128, 128, k=3, stride=1, pad=1) self.conv6 = model_utils.conv(batchNorm, 128, 256, k=3, stride=2, pad=1) self.conv7 = model_utils.conv(batchNorm, 256, 256, k=3, stride=1, pad=1)
def __init__(self, batchNorm=False, c_in=3, other={}): super(FeatExtractor, self).__init__() self.other = other self.conv1 = model_utils.conv(batchNorm, c_in, 64, k=3, stride=1, pad=1) self.conv2 = model_utils.conv(batchNorm, 64, 128, k=3, stride=2, pad=1) self.conv3 = model_utils.conv(batchNorm, 128, 128, k=3, stride=1, pad=1) self.conv4 = model_utils.conv(batchNorm, 128, 256, k=3, stride=2, pad=1) self.conv5 = model_utils.conv(batchNorm, 256, 256, k=3, stride=1, pad=1) self.conv6 = model_utils.deconv(256, 128) self.conv7 = model_utils.conv(batchNorm, 128, 128, k=3, stride=1, pad=1)
def __init__(self, batchNorm, c_in, other): super(Classifier, self).__init__() self.conv1 = model_utils.conv(batchNorm, 512, 256, k=3, stride=1, pad=1) self.conv2 = model_utils.conv(batchNorm, 256, 256, k=3, stride=2, pad=1) self.conv3 = model_utils.conv(batchNorm, 256, 256, k=3, stride=2, pad=1) self.conv4 = model_utils.conv(batchNorm, 256, 256, k=3, stride=2, pad=1) self.other = other self.dir_x_est = nn.Sequential( model_utils.conv(batchNorm, 256, 64, k=1, stride=1, pad=0), model_utils.outputConv(64, other['dirs_cls'], k=1, stride=1, pad=0)) self.dir_y_est = nn.Sequential( model_utils.conv(batchNorm, 256, 64, k=1, stride=1, pad=0), model_utils.outputConv(64, other['dirs_cls'], k=1, stride=1, pad=0)) self.int_est = nn.Sequential( model_utils.conv(batchNorm, 256, 64, k=1, stride=1, pad=0), model_utils.outputConv(64, other['ints_cls'], k=1, stride=1, pad=0))