Beispiel #1
0
def evaluate_line():
    config = model_utils.load_config(FLAGS.config_file)
    tf_config = tf.ConfigProto()
    tf_config.gpu_options.allow_growth = True
    with open(FLAGS.map_file, "rb") as f:
        word_to_id, id_to_word, tag_to_id, id_to_tag = pickle.load(f)
    with tf.Session(config=tf_config) as sess:
        model = model_utils.create(sess, Model, FLAGS.ckpt_path, config)
        book = openpyxl.load_workbook(r'输入文件.xlsx')
        sh = book.active
        arr = []
        for r in list(sh.rows)[1:]:
            line = r[1].value
            result = model.evaluate_line(
                sess, data_utils.input_from_line(line, word_to_id), id_to_tag)
            arr.append({"id": r[0].value, "data": result})
        print(arr)

        newbook = openpyxl.Workbook()
        sh = newbook.active
        headtype = {
            'DIS': {
                "name": '疾病',
                "num": 20
            },
            '症状的type': {
                "name": '症状',
                "num": 20
            },
            'DURG': {
                "name": '药物',
                "num": 20
            }
        }
        harr = ['ID']
        for n, t in headtype.items():
            t['start'] = len(harr)
            for i in range(1, t['num'] + 1):
                harr.append(t['name'] + str(i))
        sh.append(harr)
        for t in arr:
            larr = [''] * len(harr)
            larr[0] = t['id']
            htc = {k: obj['start'] for k, obj in headtype.items()}
            for entitie in t['data']['entities']:
                larr[htc[entitie['type']]] = entitie['word']
                htc[entitie['type']] += 1
            sh.append(larr)
        newbook.save(r'输出文件.xlsx')
def evaluate_line():
    config = model_utils.load_config(FLAGS.config_file)
    logger = model_utils.get_logger(FLAGS.log_file)
    tf_config = tf.ConfigProto()
    tf_config.gpu_options.allow_growth = True
    with open(FLAGS.map_file, 'rb') as f:
        word_to_id, id_to_word, tag_to_id, id_to_tag = pickle.load(f)
    with tf.Session(config=tf_config) as sess:
        model = model_utils.create(sess, Model, FLAGS.ckpt_path, load_word2vec,
                                   config, id_to_word, logger, FLAGS.train)
        while True:
            line = input('请输入测试句子(输入q退出):')
            if line == 'q':
                return
            result = model.evaluate_line(
                sess, data_utils.input_from_line(line, word_to_id), id_to_tag)
            print(result)
Beispiel #3
0
def evaluate_line():
    config = model_utils.load_config(FLAGS.config_file)
    tf_config = tf.ConfigProto()
    tf_config.gpu_options.allow_growth = True
    with open(FLAGS.map_file, "rb") as f:
        word_to_id, id_to_word, tag_to_id, id_to_tag = pickle.load(f)
    with tf.Session(config=tf_config) as sess:
        model = model_utils.create(sess, Model, FLAGS.ckpt_path, config)
        out = []
        df = pd.read_excel(local_file)
        for line in df['病历']:
            result = model.evaluate_line(
                sess, data_utils.input_from_line(line, word_to_id), id_to_tag)
            out.append(handle(result))
        columns = []
        for item in types_index:
            for i in range(1, types_num + 1):
                columns.append(item + str(i))

        df_out = pd.DataFrame(out, columns=columns)
        df_out.insert(loc=0, column='ID', value=df['ID'])
        df_out.to_excel(result_file, index=None)
def evaluate_line():

    config = model_utils.load_config(FLAGS.config_file)

    tf_config = tf.ConfigProto()

    tf_config.gpu_options.allow_growth = True

    with open(FLAGS.map_file, "rb") as f:

        word_to_id, id_to_word, tag_to_id, id_to_tag = pickle.load(f)

    with tf.Session(config=tf_config) as sess:

        model = model_utils.create(sess, Model, FLAGS.ckpt_path, config)

        df = pd.read_excel('1.xlsx')

        for line in df['文本']:

            result = model.evaluate_line(
                sess, data_utils.input_from_line(line, word_to_id), id_to_tag)

            print(result)
Beispiel #5
0
def train():
    # 加载数据集
    train_sentences = data_loader.load_sentences(FLAGS.train_file)
    dev_sentences = data_loader.load_sentences(FLAGS.dev_file)
    test_sentences = data_loader.load_sentences(FLAGS.test_file)

    # 转换编码
    data_loader.update_tag_scheme(train_sentences, FLAGS.tag_schema)
    data_loader.update_tag_scheme(dev_sentences, FLAGS.tag_schema)
    data_loader.update_tag_scheme(test_sentences, FLAGS.tag_schema)

    # 创建单词和词典映射
    if not os.path.isfile(FLAGS.map_file):
        if FLAGS.pre_emb:
            dico_words_train = data_loader.word_mapping(train_sentences)[0]
            dico_word, word_to_id, id_to_word = data_utils.augment_with_pretrained(
                dico_words_train.copy(), FLAGS.emb_file,
                list(
                    itertools.chain.from_iterable([[w[0] for w in s]
                                                   for s in test_sentences])))
        else:
            _, word_to_id, id_to_word = data_loader.word_mapping(
                train_sentences)
        _, tag_to_id, id_to_tag = data_loader.tag_mapping(train_sentences)
        with open(FLAGS.map_file, 'wb') as f:
            pickle.dump([word_to_id, id_to_word, tag_to_id, id_to_tag], f)
    else:
        with open(FLAGS.map_file, 'rb') as f:
            word_to_id, id_to_word, tag_to_id, id_to_tag = pickle.load(f)

    # 准备数据
    train_data = data_loader.prepare_dataset(train_sentences, word_to_id,
                                             tag_to_id)
    dev_data = data_loader.prepare_dataset(dev_sentences, word_to_id,
                                           tag_to_id)
    test_data = data_loader.prepare_dataset(test_sentences, word_to_id,
                                            tag_to_id)

    # 将数据分批处理
    train_manager = data_utils.BatchManager(train_data, FLAGS.batch_size)
    dev_manager = data_utils.BatchManager(dev_data, FLAGS.batch_size)
    test_manager = data_utils.BatchManager(test_data, FLAGS.batch_size)

    # 创建不存在的文件夹
    model_utils.make_path(FLAGS)

    # 判断配置文件
    if os.path.isfile(FLAGS.config_file):
        config = model_utils.load_config(FLAGS.config_file)
    else:
        config = model_utils.config_model(FLAGS, word_to_id, tag_to_id)
        model_utils.save_config(config, FLAGS.config_file)

    # 配置印logger
    log_path = os.path.join('log', FLAGS.log_file)
    logger = model_utils.get_logger(log_path)
    model_utils.print_config(config, logger)

    tf_config = tf.ConfigProto(allow_soft_placement=True)
    tf_config.gpu_options.allow_growth = True

    step_per_epoch = train_manager.len_data
    with tf.Session(config=tf_config) as sess:
        model = model_utils.create(sess, Model, FLAGS.ckpt_path, load_word2vec,
                                   config, id_to_word, logger)
        logger.info('开始训练')
        loss = []
        start = time.time()
        for i in range(100):
            for batch in train_manager.iter_batch(shuffle=True):
                step, batch_loss = model.run_step(sess, True, batch)
                loss.append(batch_loss)
                if step % FLAGS.setps_chech == 0:
                    iteration = step // step_per_epoch + 1
                    logger.info(
                        "iteration{}: step{}/{}, NER loss:{:>9.6f}".format(
                            iteration, step % step_per_epoch, step_per_epoch,
                            np.mean(loss)))
                    loss = []
            best = evaluate(sess, model, 'dev', dev_manager, id_to_tag, logger)

            if best:
                model_utils.save_model(sess, model, FLAGS.ckpt_path, logger)
            evaluate(sess, model, 'test', test_manager, id_to_tag, logger)
        t = time.time() - start
        logger.info('cost time: %f' % t)
logger = model_utils.get_logger(log_path)

model_utils.print_config(config, logger)



tf_config = tf.ConfigProto()

tf_config.gpu_options.allow_growth = True

steps_per_epoch =train_manager.len_data

with tf.Session(config = tf_config) as sess:

model = model_utils.create(sess, Model, FLAGS.ckpt_path, load_word2vec, config, id_to_word, logger)

logger.info("开始训练")

loss = []

for i in range(100):

for batch in train_manager.iter_batch(shuffle=True):

step, batch_loss = model.run_step(sess, True, batch)

loss.append(batch_loss)

if step % FLAGS.setps_chech== 0:
def train():
    # 加载数据集
    train_sentences = data_loader.load_sentences(FLAGS.train_file)
    dev_sentences = data_loader.load_sentences(FLAGS.dev_file)
    test_sentences = data_loader.load_sentences(FLAGS.test_file)

    # 转换编码 bio转bioes
    data_loader.update_tag_scheme(train_sentences, FLAGS.tag_schema)
    data_loader.update_tag_scheme(test_sentences, FLAGS.tag_schema)
    data_loader.update_tag_scheme(dev_sentences, FLAGS.tag_schema)

    # 创建单词映射及标签映射
    if not os.path.isfile(FLAGS.map_file):
        if FLAGS.pre_emb:
            dico_words_train = data_loader.word_mapping(train_sentences)[0]
            dico_word, word_to_id, id_to_word = data_utils.augment_with_pretrained(
                dico_words_train.copy(),
                FLAGS.emb_file,
                list(
                    itertools.chain.from_iterable(
                        [[w[0] for w in s] for s in test_sentences]
                    )
                )
            )
        else:
            _, word_to_id, id_to_word = data_loader.word_mapping(train_sentences)

        _, tag_to_id, id_to_tag = data_loader.tag_mapping(train_sentences)

        with open(FLAGS.map_file, "wb") as f:
            pickle.dump([word_to_id, id_to_word, tag_to_id, id_to_tag], f)
    else:
        with open(FLAGS.map_file, 'rb') as f:
            word_to_id, id_to_word, tag_to_id, id_to_tag = pickle.load(f)

    train_data = data_loader.prepare_dataset(
        train_sentences, word_to_id, tag_to_id
    )

    dev_data = data_loader.prepare_dataset(
        dev_sentences, word_to_id, tag_to_id
    )

    test_data = data_loader.prepare_dataset(
        test_sentences, word_to_id, tag_to_id
    )

    train_manager = data_utils.BatchManager(train_data, FLAGS.batch_size)
    dev_manager = data_utils.BatchManager(dev_data, FLAGS.batch_size)
    test_manager = data_utils.BatchManager(test_data, FLAGS.batch_size)

    print('train_data_num %i, dev_data_num %i, test_data_num %i' % (len(train_data), len(dev_data), len(test_data)))

    model_utils.make_path(FLAGS)

    if os.path.isfile(FLAGS.config_file):
        config = model_utils.load_config(FLAGS.config_file)
    else:
        config = model_utils.config_model(FLAGS, word_to_id, tag_to_id)
        model_utils.save_config(config, FLAGS.config_file)

    log_path = os.path.join("log", FLAGS.log_file)
    logger = model_utils.get_logger(log_path)
    model_utils.print_config(config, logger)

    tf_config = tf.ConfigProto()
    tf_config.gpu_options.allow_growth = True
    steps_per_epoch =train_manager.len_data
    with tf.Session(config = tf_config) as sess:
        model = model_utils.create(sess, Model, FLAGS.ckpt_path, load_word2vec, config, id_to_word, logger)
        logger.info("开始训练")
        loss = []
        for i in range(100):
            for batch in train_manager.iter_batch(shuffle=True):
                step, batch_loss = model.run_step(sess, True, batch)
                loss.append(batch_loss)
                if step % FLAGS.setps_chech== 0:
                    iterstion = step // steps_per_epoch + 1
                    logger.info("iteration:{} step{}/{},NER loss:{:>9.6f}".format(iterstion, step%steps_per_epoch, steps_per_epoch, np.mean(loss)))
                    loss = []

            best = evaluate(sess,model,"dev", dev_manager, id_to_tag, logger)

            if best:
                model_utils.save_model(sess, model, FLAGS.ckpt_path, logger)
            evaluate(sess, model, "test", test_manager, id_to_tag, logger)