Beispiel #1
0
    def _single_gpu_build_func(model):
        """Build the model on a single GPU. Can be called in a loop over GPUs
        with name and device scoping to create a data parallel model.
        """
        # Add the conv body (called "backbone architecture" in papers)
        # E.g., ResNet-50, ResNet-50-FPN, ResNeXt-101-FPN, etc.
        blob_conv, dim_conv, spatial_scale_conv = add_conv_body_func(model)
        if freeze_conv_body:
            for b in c2_utils.BlobReferenceList(blob_conv):
                model.StopGradient(b, b)

        if not model.train:  # == inference
            # Create a net that can be used to execute the conv body on an image
            # (without also executing RPN or any other network heads)
            model.conv_body_net = model.net.Clone('conv_body_net')

        head_loss_gradients = {
            'rpn': None,
            'box': None,
            'mask': None,
            'keypoints': None,
        }

        if cfg.RPN.RPN_ON:
            # Add the RPN head
            head_loss_gradients['rpn'] = rpn_heads.add_generic_rpn_outputs(
                model, blob_conv, dim_conv, spatial_scale_conv)

        if cfg.FPN.FPN_ON:
            # After adding the RPN head, restrict FPN blobs and scales to
            # those used in the RoI heads
            blob_conv, spatial_scale_conv = _narrow_to_fpn_roi_levels(
                blob_conv, spatial_scale_conv)

        if not cfg.MODEL.RPN_ONLY:
            # Add the Fast R-CNN head
            head_loss_gradients['box'] = _add_fast_rcnn_head(
                model, add_roi_box_head_func, blob_conv, dim_conv,
                spatial_scale_conv)

        if cfg.MODEL.MASK_ON:
            # Add the mask head
            head_loss_gradients['mask'] = _add_roi_mask_head(
                model, add_roi_mask_head_func, blob_conv, dim_conv,
                spatial_scale_conv)

        if cfg.MODEL.KEYPOINTS_ON:
            # Add the keypoint head
            head_loss_gradients['keypoint'] = _add_roi_keypoint_head(
                model, add_roi_keypoint_head_func, blob_conv, dim_conv,
                spatial_scale_conv)

        if model.train:
            loss_gradients = {}
            for lg in head_loss_gradients.values():
                if lg is not None:
                    loss_gradients.update(lg)
            return loss_gradients
        else:
            return None
Beispiel #2
0
    def _single_gpu_build_func(model):
        """Build the model on a single GPU. Can be called in a loop over GPUs
        with name and device scoping to create a data parallel model.
        """
        # Add the conv body (called "backbone architecture" in papers)
        # E.g., ResNet-50, ResNet-50-FPN, ResNeXt-101-FPN, etc.
        blob_conv, dim_conv, spatial_scale_conv = add_conv_body_func(model)
        if freeze_conv_body:
            for b in c2_utils.BlobReferenceList(blob_conv):
                model.StopGradient(b, b)

        if not model.train:  # == inference
            # Create a net that can be used to execute the conv body on an image
            # (without also executing RPN or any other network heads)
            model.conv_body_net = model.net.Clone('conv_body_net')

        head_loss_gradients = {
            'rpn': None,
            'box': None,
            'mask': None,
            'keypoints': None,
        }

        if cfg.RPN.RPN_ON:
            # Add the RPN head
            head_loss_gradients['rpn'] = rpn_heads.add_generic_rpn_outputs(
                model, blob_conv, dim_conv, spatial_scale_conv
            )

        if cfg.FPN.FPN_ON:
            # After adding the RPN head, restrict FPN blobs and scales to
            # those used in the RoI heads
            blob_conv, spatial_scale_conv = _narrow_to_fpn_roi_levels(
                blob_conv, spatial_scale_conv
            )

        if not cfg.MODEL.RPN_ONLY:
            # Add the Fast R-CNN head
            head_loss_gradients['box'] = _add_fast_rcnn_head(
                model, add_roi_box_head_func, blob_conv, dim_conv,
                spatial_scale_conv
            )

        if cfg.MODEL.MASK_ON:
            # Add the mask head
            head_loss_gradients['mask'] = _add_roi_mask_head(
                model, add_roi_mask_head_func, blob_conv, dim_conv,
                spatial_scale_conv
            )

        if cfg.MODEL.KEYPOINTS_ON:
            # Add the keypoint head
            head_loss_gradients['keypoint'] = _add_roi_keypoint_head(
                model, add_roi_keypoint_head_func, blob_conv, dim_conv,
                spatial_scale_conv
            )

        if model.train:
            loss_gradients = {}
            for lg in head_loss_gradients.values():
                if lg is not None:
                    loss_gradients.update(lg)
            return loss_gradients
        else:
            return None