Beispiel #1
0
def __transition_block(ip,
                       nb_filter,
                       compression=1.0,
                       weight_decay=1e-4,
                       attention_module=None):
    ''' Apply BatchNorm, Relu 1x1, Conv2D, optional compression, dropout and Maxpooling2D
    Args:
        ip: keras tensor
        nb_filter: number of filters
        compression: calculated as 1 - reduction. Reduces the number of feature maps
                    in the transition block.
        dropout_rate: dropout rate
        weight_decay: weight decay factor
    Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
    x = Activation('relu')(x)
    x = Conv2D(int(nb_filter * compression), (1, 1),
               kernel_initializer='he_normal',
               padding='same',
               use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)
    x = AveragePooling2D((2, 2), strides=(2, 2))(x)

    # attention_module
    if attention_module == 'se_block':
        x = se_block(x)
    if attention_module == 'cbam_block':
        x = cbam_block(x)

    return x
Beispiel #2
0
def __dense_block(x,
                  nb_layers,
                  nb_filter,
                  growth_rate,
                  bottleneck=False,
                  dropout_rate=None,
                  weight_decay=1e-4,
                  grow_nb_filters=True,
                  return_concat_list=False,
                  attention_module=None):
    ''' Build a dense_block where the output of each conv_block is fed to subsequent ones
    Args:
        x: keras tensor
        nb_layers: the number of layers of conv_block to append to the model.
        nb_filter: number of filters
        growth_rate: growth rate
        bottleneck: bottleneck block
        dropout_rate: dropout rate
        weight_decay: weight decay factor
        grow_nb_filters: flag to decide to allow number of filters to grow
        return_concat_list: return the list of feature maps along with the actual output
    Returns: keras tensor with nb_layers of conv_block appended
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x_list = [x]

    for i in range(nb_layers):
        cb = __conv_block(x, growth_rate, bottleneck, dropout_rate,
                          weight_decay)
        x_list.append(cb)

        x = concatenate([x, cb], axis=concat_axis)

        if grow_nb_filters:
            nb_filter += growth_rate

# attention_module
    if attention_module == 'se_block':
        x = se_block(x)
    if attention_module == 'cbam_block':
        x = cbam_block(x)

    if return_concat_list:
        return x, nb_filter, x_list
    else:
        return x, nb_filter
def __bottleneck_block(input,
                       filters=64,
                       cardinality=8,
                       strides=1,
                       weight_decay=5e-4,
                       attention_module=None):
    ''' Adds a bottleneck block
    Args:
        input: input tensor
        filters: number of output filters
        cardinality: cardinality factor described number of
            grouped convolutions
        strides: performs strided convolution for downsampling if > 1
        weight_decay: weight decay factor
    Returns: a keras tensor
    '''
    init = input

    grouped_channels = int(filters / cardinality)
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    # Check if input number of filters is same as 16 * k, else create convolution2d for this input
    if K.image_data_format() == 'channels_first':
        if init._keras_shape[1] != 2 * filters:
            init = Conv2D(filters * 2, (1, 1),
                          padding='same',
                          strides=(strides, strides),
                          use_bias=False,
                          kernel_initializer='he_normal',
                          kernel_regularizer=l2(weight_decay))(init)
            init = BatchNormalization(axis=channel_axis)(init)
    else:
        if init._keras_shape[-1] != 2 * filters:
            init = Conv2D(filters * 2, (1, 1),
                          padding='same',
                          strides=(strides, strides),
                          use_bias=False,
                          kernel_initializer='he_normal',
                          kernel_regularizer=l2(weight_decay))(init)
            init = BatchNormalization(axis=channel_axis)(init)

    x = Conv2D(filters, (1, 1),
               padding='same',
               use_bias=False,
               kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay))(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = LeakyReLU()(x)

    x = __grouped_convolution_block(x, grouped_channels, cardinality, strides,
                                    weight_decay)

    x = Conv2D(filters * 2, (1, 1),
               padding='same',
               use_bias=False,
               kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay))(x)
    x = BatchNormalization(axis=channel_axis)(x)

    if attention_module == 'se_block':
        x = se_block(x)
    if attention_module == 'cbam_block':
        x = cbam_block(x)

    x = add([init, x])
    x = LeakyReLU()(x)

    return x
def resnet_v2(input_shape, depth, num_classes=10, attention_module=None):
    """ResNet Version 2 Model builder [b]

    Stacks of (1 x 1)-(3 x 3)-(1 x 1) BN-ReLU-Conv2D or also known as
    bottleneck layer
    First shortcut connection per layer is 1 x 1 Conv2D.
    Second and onwards shortcut connection is identity.
    At the beginning of each stage, the feature map size is halved (downsampled)
    by a convolutional layer with strides=2, while the number of filter maps is
    doubled. Within each stage, the layers have the same number filters and the
    same filter map sizes.
    Features maps sizes:
    conv1  : 32x32,  16
    stage 0: 32x32,  64
    stage 1: 16x16, 128
    stage 2:  8x8,  256

    # Arguments
        input_shape (tensor): shape of input image tensor
        depth (int): number of core convolutional layers
        num_classes (int): number of classes (CIFAR10 has 10)

    # Returns
        model (Model): Keras model instance
    """
    if (depth - 2) % 9 != 0:
        raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])')
    # Start model definition.
    num_filters_in = 16
    num_res_blocks = int((depth - 2) / 9)

    inputs = Input(shape=input_shape)
    # v2 performs Conv2D with BN-ReLU on input before splitting into 2 paths
    x = resnet_layer(inputs=inputs,
                     num_filters=num_filters_in,
                     conv_first=True)

    # Instantiate the stack of residual units
    for stage in range(3):
        for res_block in range(num_res_blocks):
            activation = 'relu'
            batch_normalization = True
            strides = 1
            if stage == 0:
                num_filters_out = num_filters_in * 4
                if res_block == 0:  # first layer and first stage
                    activation = None
                    batch_normalization = False
            else:
                num_filters_out = num_filters_in * 2
                if res_block == 0:  # first layer but not first stage
                    strides = 2  # downsample

            # bottleneck residual unit
            y = resnet_layer(inputs=x,
                             num_filters=num_filters_in,
                             kernel_size=1,
                             strides=strides,
                             activation=activation,
                             batch_normalization=batch_normalization,
                             conv_first=False)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters_in,
                             conv_first=False)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters_out,
                             kernel_size=1,
                             conv_first=False)
            if res_block == 0:
                # linear projection residual shortcut connection to match
                # changed dims
                x = resnet_layer(inputs=x,
                                 num_filters=num_filters_out,
                                 kernel_size=1,
                                 strides=strides,
                                 activation=None,
                                 batch_normalization=False)
            if attention_module == 'se_block':
                y = se_block(y)
            if attention_module == 'cbam_block':
                y = cbam_block(y)

            x = keras.layers.add([x, y])

        num_filters_in = num_filters_out

    # Add classifier on top.
    # v2 has BN-ReLU before Pooling
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = AveragePooling2D(pool_size=8)(x)
    y = Flatten()(x)
    outputs = Dense(num_classes,
                    activation='softmax',
                    kernel_initializer='he_normal')(y)

    # Instantiate model.
    model = Model(inputs=inputs, outputs=outputs)
    return model
Beispiel #5
0
def inception_resnet_block(x, scale, block_type, block_idx, activation='relu', attention_module=None):
    """Adds a Inception-ResNet block with Squeeze and Excitation block at the end.
    This function builds 3 types of Inception-ResNet blocks mentioned
    in the paper, controlled by the `block_type` argument (which is the
    block name used in the official TF-slim implementation):
        - Inception-ResNet-A: `block_type='block35'`
        - Inception-ResNet-B: `block_type='block17'`
        - Inception-ResNet-C: `block_type='block8'`
    # Arguments
        x: input tensor.
        scale: scaling factor to scale the residuals (i.e., the output of
            passing `x` through an inception module) before adding them
            to the shortcut branch. Let `r` be the output from the residual branch,
            the output of this block will be `x + scale * r`.
        block_type: `'block35'`, `'block17'` or `'block8'`, determines
            the network structure in the residual branch.
        block_idx: an `int` used for generating layer names. The Inception-ResNet blocks
            are repeated many times in this network. We use `block_idx` to identify
            each of the repetitions. For example, the first Inception-ResNet-A block
            will have `block_type='block35', block_idx=0`, ane the layer names will have
            a common prefix `'block35_0'`.
        activation: activation function to use at the end of the block
            (see [activations](../activations.md)).
            When `activation=None`, no activation is applied
            (i.e., "linear" activation: `a(x) = x`).
    # Returns
        Output tensor for the block.
    # Raises
        ValueError: if `block_type` is not one of `'block35'`,
            `'block17'` or `'block8'`.
    """
    if block_type == 'block35':
        branch_0 = conv2d_bn(x, 32, 1)
        branch_1 = conv2d_bn(x, 32, 1)
        branch_1 = conv2d_bn(branch_1, 32, 3)
        branch_2 = conv2d_bn(x, 32, 1)
        branch_2 = conv2d_bn(branch_2, 48, 3)
        branch_2 = conv2d_bn(branch_2, 64, 3)
        branches = [branch_0, branch_1, branch_2]
    elif block_type == 'block17':
        branch_0 = conv2d_bn(x, 192, 1)
        branch_1 = conv2d_bn(x, 128, 1)
        branch_1 = conv2d_bn(branch_1, 160, [1, 7])
        branch_1 = conv2d_bn(branch_1, 192, [7, 1])
        branches = [branch_0, branch_1]
    elif block_type == 'block8':
        branch_0 = conv2d_bn(x, 192, 1)
        branch_1 = conv2d_bn(x, 192, 1)
        branch_1 = conv2d_bn(branch_1, 224, [1, 3])
        branch_1 = conv2d_bn(branch_1, 256, [3, 1])
        branches = [branch_0, branch_1]
    else:
        raise ValueError('Unknown Inception-ResNet block type. '
                         'Expects "block35", "block17" or "block8", '
                         'but got: ' + str(block_type))

    block_name = block_type + '_' + str(block_idx)
    channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
    mixed = Concatenate(axis=channel_axis, name=block_name + '_mixed')(branches)
    up = conv2d_bn(mixed,
                   K.int_shape(x)[channel_axis],
                   1,
                   activation=None,
                   use_bias=True,
                   name=block_name + '_conv')

    x = Lambda(lambda inputs, scale: inputs[0] + inputs[1] * scale,
               output_shape=K.int_shape(x)[1:],
               arguments={'scale': scale},
               name=block_name)([x, up])
    if activation is not None:
        x = Activation(activation, name=block_name + '_ac')(x)

    # attention_module
    if attention_module == 'se_block':
        x = se_block(x)
    if attention_module == 'cbam_block':
        x = cbam_block(x)
    return x
def InceptionV3(include_top=True,
                weights=None,
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000,
                attention_module=None):
    """Instantiates the Squeeze and Excite Inception v3 architecture.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or "imagenet" (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(299, 299, 3)` (with `channels_last` data format)
            or `(3, 299, 299)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 139.
            E.g. `(150, 150, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=299,
                                      min_size=139,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if K.image_data_format() == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = 3

    x = _conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
    x = _conv2d_bn(x, 32, 3, 3, padding='valid')
    x = _conv2d_bn(x, 64, 3, 3)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = _conv2d_bn(x, 80, 1, 1, padding='valid')
    x = _conv2d_bn(x, 192, 3, 3, padding='valid')
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    # mixed 0, 1, 2: 35 x 35 x 256
    branch1x1 = _conv2d_bn(x, 64, 1, 1)

    branch5x5 = _conv2d_bn(x, 48, 1, 1)
    branch5x5 = _conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = _conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = _conv2d_bn(branch_pool, 32, 1, 1)
    x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed0')

    # attention_module
    if attention_module == 'se_block':
        x = se_block(x)
    if attention_module == 'cbam_block':
        x = cbam_block(x)

    # mixed 1: 35 x 35 x 256
    branch1x1 = _conv2d_bn(x, 64, 1, 1)

    branch5x5 = _conv2d_bn(x, 48, 1, 1)
    branch5x5 = _conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = _conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = _conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed1')

    # attention_module
    if attention_module == 'se_block':
        x = se_block(x)
    if attention_module == 'cbam_block':
        x = cbam_block(x)

    # mixed 2: 35 x 35 x 256
    branch1x1 = _conv2d_bn(x, 64, 1, 1)

    branch5x5 = _conv2d_bn(x, 48, 1, 1)
    branch5x5 = _conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = _conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = _conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed2')

    # attention_module
    if attention_module == 'se_block':
        x = se_block(x)
    if attention_module == 'cbam_block':
        x = cbam_block(x)

    # mixed 3: 17 x 17 x 768
    branch3x3 = _conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

    branch3x3dbl = _conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = _conv2d_bn(branch3x3dbl,
                              96,
                              3,
                              3,
                              strides=(2, 2),
                              padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate([branch3x3, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed3')

    # attention_module
    if attention_module == 'se_block':
        x = se_block(x)
    if attention_module == 'cbam_block':
        x = cbam_block(x)

    # mixed 4: 17 x 17 x 768
    branch1x1 = _conv2d_bn(x, 192, 1, 1)

    branch7x7 = _conv2d_bn(x, 128, 1, 1)
    branch7x7 = _conv2d_bn(branch7x7, 128, 1, 7)
    branch7x7 = _conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = _conv2d_bn(x, 128, 1, 1)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 128, 1, 7)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = _conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate([branch1x1, branch7x7, branch7x7dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed4')

    # attention_module
    if attention_module == 'se_block':
        x = se_block(x)
    if attention_module == 'cbam_block':
        x = cbam_block(x)

    # mixed 5, 6: 17 x 17 x 768
    for i in range(2):
        branch1x1 = _conv2d_bn(x, 192, 1, 1)

        branch7x7 = _conv2d_bn(x, 160, 1, 1)
        branch7x7 = _conv2d_bn(branch7x7, 160, 1, 7)
        branch7x7 = _conv2d_bn(branch7x7, 192, 7, 1)

        branch7x7dbl = _conv2d_bn(x, 160, 1, 1)
        branch7x7dbl = _conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = _conv2d_bn(branch7x7dbl, 160, 1, 7)
        branch7x7dbl = _conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = _conv2d_bn(branch7x7dbl, 192, 1, 7)

        branch_pool = AveragePooling2D((3, 3), strides=(1, 1),
                                       padding='same')(x)
        branch_pool = _conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch7x7, branch7x7dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(5 + i))

        # attention_module
        if attention_module == 'se_block':
            x = se_block(x)
        if attention_module == 'cbam_block':
            x = cbam_block(x)

    # mixed 7: 17 x 17 x 768
    branch1x1 = _conv2d_bn(x, 192, 1, 1)

    branch7x7 = _conv2d_bn(x, 192, 1, 1)
    branch7x7 = _conv2d_bn(branch7x7, 192, 1, 7)
    branch7x7 = _conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = _conv2d_bn(x, 192, 1, 1)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 192, 1, 7)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = _conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate([branch1x1, branch7x7, branch7x7dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed7')

    # attention_module
    if attention_module == 'se_block':
        x = se_block(x)
    if attention_module == 'cbam_block':
        x = cbam_block(x)

    # mixed 8: 8 x 8 x 1280
    branch3x3 = _conv2d_bn(x, 192, 1, 1)
    branch3x3 = _conv2d_bn(branch3x3,
                           320,
                           3,
                           3,
                           strides=(2, 2),
                           padding='valid')

    branch7x7x3 = _conv2d_bn(x, 192, 1, 1)
    branch7x7x3 = _conv2d_bn(branch7x7x3, 192, 1, 7)
    branch7x7x3 = _conv2d_bn(branch7x7x3, 192, 7, 1)
    branch7x7x3 = _conv2d_bn(branch7x7x3,
                             192,
                             3,
                             3,
                             strides=(2, 2),
                             padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate([branch3x3, branch7x7x3, branch_pool],
                           axis=channel_axis,
                           name='mixed8')

    # attention_module
    if attention_module == 'se_block':
        x = se_block(x)
    if attention_module == 'cbam_block':
        x = cbam_block(x)

    # mixed 9: 8 x 8 x 2048
    for i in range(2):
        branch1x1 = _conv2d_bn(x, 320, 1, 1)

        branch3x3 = _conv2d_bn(x, 384, 1, 1)
        branch3x3_1 = _conv2d_bn(branch3x3, 384, 1, 3)
        branch3x3_2 = _conv2d_bn(branch3x3, 384, 3, 1)
        branch3x3 = layers.concatenate([branch3x3_1, branch3x3_2],
                                       axis=channel_axis,
                                       name='mixed9_' + str(i))

        branch3x3dbl = _conv2d_bn(x, 448, 1, 1)
        branch3x3dbl = _conv2d_bn(branch3x3dbl, 384, 3, 3)
        branch3x3dbl_1 = _conv2d_bn(branch3x3dbl, 384, 1, 3)
        branch3x3dbl_2 = _conv2d_bn(branch3x3dbl, 384, 3, 1)
        branch3x3dbl = layers.concatenate([branch3x3dbl_1, branch3x3dbl_2],
                                          axis=channel_axis)

        branch_pool = AveragePooling2D((3, 3), strides=(1, 1),
                                       padding='same')(x)
        branch_pool = _conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(9 + i))

        # attention_module
        if attention_module == 'se_block':
            x = se_block(x)
        if attention_module == 'cbam_block':
            x = cbam_block(x)

    if include_top:
        # Classification block
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='inception_v3')

    return model
def _depthwise_conv_block(inputs,
                          pointwise_conv_filters,
                          alpha,
                          depth_multiplier=1,
                          strides=(1, 1),
                          block_id=1,
                          attention_module=None):
    """Adds a depthwise convolution block.
    A depthwise convolution block consists of a depthwise conv,
    batch normalization, relu6, pointwise convolution,
    batch normalization and relu6 activation.
    # Arguments
        inputs: Input tensor of shape `(rows, cols, channels)`
            (with `channels_last` data format) or
            (channels, rows, cols) (with `channels_first` data format).
        pointwise_conv_filters: Integer, the dimensionality of the output space
            (i.e. the number output of filters in the pointwise convolution).
        alpha: controls the width of the network.
            - If `alpha` < 1.0, proportionally decreases the number
                of filters in each layer.
            - If `alpha` > 1.0, proportionally increases the number
                of filters in each layer.
            - If `alpha` = 1, default number of filters from the paper
                 are used at each layer.
        depth_multiplier: The number of depthwise convolution output channels
            for each input channel.
            The total number of depthwise convolution output
            channels will be equal to `filters_in * depth_multiplier`.
        strides: An integer or tuple/list of 2 integers,
            specifying the strides of the convolution along the width and height.
            Can be a single integer to specify the same value for
            all spatial dimensions.
            Specifying any stride value != 1 is incompatible with specifying
            any `dilation_rate` value != 1.
        block_id: Integer, a unique identification designating the block number.
    # Input shape
        4D tensor with shape:
        `(batch, channels, rows, cols)` if data_format='channels_first'
        or 4D tensor with shape:
        `(batch, rows, cols, channels)` if data_format='channels_last'.
    # Output shape
        4D tensor with shape:
        `(batch, filters, new_rows, new_cols)` if data_format='channels_first'
        or 4D tensor with shape:
        `(batch, new_rows, new_cols, filters)` if data_format='channels_last'.
        `rows` and `cols` values might have changed due to stride.
    # Returns
        Output tensor of block.
    """
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
    pointwise_conv_filters = int(pointwise_conv_filters * alpha)

    x = DepthwiseConv2D((3, 3),
                        padding='same',
                        depth_multiplier=depth_multiplier,
                        strides=strides,
                        use_bias=False,
                        name='conv_dw_%d' % block_id)(inputs)
    x = BatchNormalization(axis=channel_axis,
                           name='conv_dw_%d_bn' % block_id)(x)
    x = Activation(relu6, name='conv_dw_%d_relu' % block_id)(x)

    x = Conv2D(pointwise_conv_filters, (1, 1),
               padding='same',
               use_bias=False,
               strides=(1, 1),
               name='conv_pw_%d' % block_id)(x)
    x = BatchNormalization(axis=channel_axis,
                           name='conv_pw_%d_bn' % block_id)(x)
    x = Activation(relu6, name='conv_pw_%d_relu' % block_id)(x)

    if attention_module == 'se_block':
        x = se_block(x)
    if attention_module == 'cbam_block':
        x = cbam_block(x)

    return x
Beispiel #8
0
def resnet_v1(input_shape, depth, num_classes=10, attention_module=None):
    """ResNet Version 1 Model builder [a]

    Stacks of 2 x (3 x 3) Conv2D-BN-ReLU
    Last ReLU is after the shortcut connection.
    At the beginning of each stage, the feature map size is halved (downsampled)
    by a convolutional layer with strides=2, while the number of filters is
    doubled. Within each stage, the layers have the same number filters and the
    same number of filters.
    Features maps sizes:
    stage 0: 32x32, 16
    stage 1: 16x16, 32
    stage 2:  8x8,  64
    The Number of parameters is approx the same as Table 6 of [a]:
    ResNet20 0.27M
    ResNet32 0.46M
    ResNet44 0.66M
    ResNet56 0.85M
    ResNet110 1.7M

    # Arguments
        input_shape (tensor): shape of input image tensor
        depth (int): number of core convolutional layers
        num_classes (int): number of classes (CIFAR10 has 10)

    # Returns
        model (Model): Keras model instance
    """
    if (depth - 2) % 6 != 0:
        raise ValueError('depth should be 6n+2 (eg 20, 32, 44 in [a])')
    # Start model definition.
    num_filters = 16
    num_res_blocks = int((depth - 2) / 6)

    inputs = Input(shape=input_shape)
    x = resnet_layer(inputs=inputs)
    # Instantiate the stack of residual units
    for stack in range(3):
        for res_block in range(num_res_blocks):
            strides = 1
            if stack > 0 and res_block == 0:  # first layer but not first stack
                strides = 2  # downsample
            y = resnet_layer(inputs=x,
                             num_filters=num_filters,
                             strides=strides)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters,
                             activation=None)
            if stack > 0 and res_block == 0:  # first layer but not first stack
                # linear projection residual shortcut connection to match
                # changed dims
                x = resnet_layer(inputs=x,
                                 num_filters=num_filters,
                                 kernel_size=1,
                                 strides=strides,
                                 activation=None,
                                 batch_normalization=False)
            if attention_module == 'se_block':
                y = se_block(y)
            if attention_module == 'cbam_block':
                y = cbam_block(y)
            x = keras.layers.add([x, y])
            x = Activation('relu')(x)
        num_filters *= 2

    # Add classifier on top.
    # v1 does not use BN after last shortcut connection-ReLU
    x = AveragePooling2D(pool_size=8)(x)
    y = Flatten()(x)
    outputs = Dense(num_classes,
                    activation='softmax',
                    kernel_initializer='he_normal')(y)

    # Instantiate model.
    model = Model(inputs=inputs, outputs=outputs)
    return model