from models.crnn import CRNNModel from sklearn.pipeline import Pipeline WINDOW_SIZE = 1366 dataloader = MelSpectrogramsLoader( data_path=prefix_path("melspec_data", common.DEFAULT_PATH), training_path=prefix_path("autotagging_moodtheme-train.tsv", common.DEFAULT_PATH), test_path=prefix_path("autotagging_moodtheme-test.tsv", common.DEFAULT_PATH), validate_path=prefix_path("autotagging_moodtheme-validation.tsv", common.DEFAULT_PATH), window_size=WINDOW_SIZE, window='random', num_windows=5, ) pipeline = Pipeline([ ("model", CRNNModel(epochs=32, dataloader=dataloader, attention=True)), ]) evaluator = ModelCallbackWrapper( FixedSplitEvaluator(**common.fixed_split_params()), lambda model: common.store_prediction(model, dataloader), ) result_handlers = [ result_handlers.print_gridsearch_results, ]
WINDOW_SIZE = 1366 dataloader = MelSpectrogramsLoader( data_path=prefix_path("melspec_data", common.DEFAULT_PATH), training_path=prefix_path("autotagging_moodtheme-train.tsv", common.DEFAULT_PATH), test_path=prefix_path("autotagging_moodtheme-test.tsv", common.DEFAULT_PATH), validate_path=prefix_path("autotagging_moodtheme-validation.tsv", common.DEFAULT_PATH), window_size=WINDOW_SIZE, ) pipeline = Pipeline([ ("model", CRNNModel(dataloader=dataloader)), ]) grid_params = common.grid_params() grid_params['n_jobs'] = 1 evaluator = FixedSplitGridEvaluator( params={ "model__epochs": [2, 16], "model__output_dropout": [None], "model__attention": [True], }, grid_params=grid_params, ) result_handlers = [
from models.crnn import CRNNModel from sklearn.pipeline import Pipeline WINDOW_SIZE = 1366 dataloader = MelSpectrogramsLoader( data_path=prefix_path("melspec_data", common.DEFAULT_PATH), training_path=prefix_path("autotagging_moodtheme-train.tsv", common.DEFAULT_PATH), test_path=prefix_path("autotagging_moodtheme-test.tsv", common.DEFAULT_PATH), validate_path=prefix_path("autotagging_moodtheme-validation.tsv", common.DEFAULT_PATH), window_size=WINDOW_SIZE, window='random', num_windows=5, ) pipeline = Pipeline([ ("model", CRNNModel(epochs=16, dataloader=dataloader)), ]) evaluator = ModelCallbackWrapper( FixedSplitEvaluator(**common.fixed_split_params()), lambda model: common.store_prediction(model, dataloader), ) result_handlers = [ result_handlers.print_gridsearch_results, ]
from sklearn.pipeline import Pipeline WINDOW_SIZE = 1366 dataloader = MelSpectrogramsLoader( data_path=prefix_path("melspec_data", common.DEFAULT_PATH), training_path=prefix_path("autotagging_moodtheme-train.tsv", common.DEFAULT_PATH), test_path=prefix_path("autotagging_moodtheme-test.tsv", common.DEFAULT_PATH), validate_path=prefix_path("autotagging_moodtheme-validation.tsv", common.DEFAULT_PATH), window_size=WINDOW_SIZE, ) EPOCHS = 1 FILE_PREFIX = 'crnn_' + str(EPOCHS) pipeline = Pipeline([ ("model", CRNNModel(epochs=EPOCHS, dataloader=dataloader)), ]) evaluator = ModelCallbackWrapper( FixedSplitEvaluator(**common.fixed_split_params()), lambda model: common.store_prediction(model, dataloader, FILE_PREFIX), ) result_handlers = [ result_handlers.print_gridsearch_results, ]