def __init__(self, in_planes, out_planes, stride, dropRate=0.0): super(BasicBlock, self).__init__() self.bn1 = custom.BN_Class(in_planes) self.relu1 = nn.ReLU(inplace=True) self.conv1 = custom.Con2d_Class(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = custom.BN_Class(out_planes) self.relu2 = nn.ReLU(inplace=True) self.conv2 = custom.Con2d_Class(out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False) self.droprate = dropRate self.equalInOut = (in_planes == out_planes) self.convShortcut = (not self.equalInOut) and custom.Con2d_Class( in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False) or None
def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = custom.BN_Class(planes) self.relu = nn.ReLU(inplace=False) self.conv2 = conv3x3(planes, planes) self.bn2 = custom.BN_Class(planes) self.downsample = downsample self.stride = stride
def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = custom.Con2d_Class(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = custom.BN_Class(64) self.relu = nn.ReLU(inplace=False) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7, stride=1) self.classifier = custom.Linear_Class(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, custom.Con2d_Class): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, custom.BN_Class): m.weight.data.fill_(1) m.bias.data.zero_()
def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = custom.Con2d_Class(inplanes, planes, kernel_size=1, bias=False) self.bn1 = custom.BN_Class(planes) self.conv2 = custom.Con2d_Class(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = custom.BN_Class(planes) self.conv3 = custom.Con2d_Class(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = custom.BN_Class(planes * 4) self.relu = nn.ReLU(inplace=False) self.downsample = downsample self.stride = stride
def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( custom.Con2d_Class(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), custom.BN_Class(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers)
def __init__(self, depth, num_classes=1000, block_name='BasicBlock'): super(ResNet, self).__init__() # Model type specifies number of layers for CIFAR-10 model if block_name.lower() == 'basicblock': assert ( depth - 2 ) % 6 == 0, 'When use basicblock, depth should be 6n+2, e.g. 20, 32, 44, 56, 110, 1202' n = (depth - 2) // 6 block = BasicBlock elif block_name.lower() == 'bottleneck': assert ( depth - 2 ) % 9 == 0, 'When use bottleneck, depth should be 9n+2, e.g. 20, 29, 47, 56, 110, 1199' n = (depth - 2) // 9 block = Bottleneck else: raise ValueError('block_name shoule be Basicblock or Bottleneck') self.inplanes = 16 self.conv1 = custom.Con2d_Class(3, 16, kernel_size=3, padding=1, bias=False) self.bn1 = custom.BN_Class(16) self.relu = nn.ReLU(inplace=False) self.layer1 = self._make_layer(block, 16, n) self.layer2 = self._make_layer(block, 32, n, stride=2) self.layer3 = self._make_layer(block, 64, n, stride=2) self.avgpool = nn.AvgPool2d(8) self.classifier = custom.Linear_Class(64 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, custom.Linear_Class) or isinstance( m, custom.Con2d_Class): init.kaiming_normal_(m.weight) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, custom.BN_Class): m.weight.data.fill_(1) if m.bias is not None: m.bias.data.zero_()
def __init__(self, depth, num_classes, widen_factor=1, dropRate=0.0): super(WideResNet, self).__init__() nChannels = [ 16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor ] assert (depth - 4) % 6 == 0, 'depth should be 6n+4' n = (depth - 4) // 6 block = BasicBlock # 1st conv before any network block self.conv1 = custom.Con2d_Class(3, nChannels[0], kernel_size=3, stride=1, padding=1, bias=False) # 1st block self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate) # 2nd block self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, dropRate) # 3rd block self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, dropRate) # global average pooling and classifier self.bn1 = custom.BN_Class(nChannels[3]) self.relu = nn.ReLU(inplace=True) self.classifier = custom.Linear_Class(nChannels[3], num_classes) self.nChannels = nChannels[3] for m in self.modules(): if isinstance(m, custom.Con2d_Class): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, custom.BN_Class): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, custom.Linear_Class): if m.bias is not None: m.bias.data.zero_()