Beispiel #1
0
def test(model, ema, args, data):
    device = torch.device(
        f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu")
    criterion = nn.CrossEntropyLoss()
    loss = 0
    answers = dict()
    model.eval()

    backup_params = EMA(0)
    for name, param in model.named_parameters():
        if param.requires_grad:
            backup_params.register(name, param.data)
            param.data.copy_(ema.get(name))
    with torch.no_grad():
        for batch in iter(data.dev_iter):
            p1, p2 = model(batch)
            batch_loss = criterion(p1, batch.s_idx) + criterion(
                p2, batch.e_idx)
            loss += batch_loss.item()

            # (batch, c_len, c_len)
            batch_size, c_len = p1.size()
            ls = nn.LogSoftmax(dim=1)
            mask = (torch.ones(c_len, c_len) *
                    float('-inf')).to(device).tril(-1).unsqueeze(0).expand(
                        batch_size, -1, -1)
            score = (ls(p1).unsqueeze(2) + ls(p2).unsqueeze(1)) + mask
            score, s_idx = score.max(dim=1)
            score, e_idx = score.max(dim=1)
            s_idx = torch.gather(s_idx, 1, e_idx.view(-1, 1)).squeeze()

            for i in range(batch_size):
                id = batch.id[i]
                answer = batch.c_word[0][i][s_idx[i]:e_idx[i] + 1]
                answer = ' '.join(
                    [data.WORD.vocab.itos[idx] for idx in answer])
                answers[id] = answer

        for name, param in model.named_parameters():
            if param.requires_grad:
                param.data.copy_(backup_params.get(name))

        with open(args.prediction_file, 'w', encoding='utf-8') as f:
            print(json.dumps(answers), file=f)

        results = evaluate.main(args)
    return loss, results['exact_match'], results['f1']
Beispiel #2
0
def train(args, data):
    device = torch.device(
        f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu")
    model = BiDAF(args, data.WORD.vocab.vectors).to(device)

    ema = EMA(args.exp_decay_rate)
    for name, param in model.named_parameters():
        if param.requires_grad:
            ema.register(name, param.data)
    parameters = filter(lambda p: p.requires_grad, model.parameters())
    optimizer = optim.Adadelta(parameters, lr=args.learning_rate)
    criterion = nn.CrossEntropyLoss()

    writer = SummaryWriter(log_dir='runs/' + args.model_time)

    model.train()
    loss, last_epoch = 0, -1
    max_dev_exact, max_dev_f1 = -1, -1

    iterator = data.train_iter
    for i, batch in enumerate(iterator):
        present_epoch = int(iterator.epoch)
        if present_epoch == args.epoch:
            break
        if present_epoch > last_epoch:
            print('epoch:', present_epoch + 1)
        last_epoch = present_epoch

        p1, p2 = model(batch)

        optimizer.zero_grad()
        batch_loss = criterion(p1, batch.s_idx) + criterion(p2, batch.e_idx)
        loss += batch_loss.item()
        batch_loss.backward()
        optimizer.step()

        for name, param in model.named_parameters():
            if param.requires_grad:
                ema.update(name, param.data)

        if (i + 1) % args.print_freq == 0:
            dev_loss, dev_exact, dev_f1 = test(model, ema, args, data)
            c = (i + 1) // args.print_freq

            writer.add_scalar('loss/train', loss, c)
            writer.add_scalar('loss/dev', dev_loss, c)
            writer.add_scalar('exact_match/dev', dev_exact, c)
            writer.add_scalar('f1/dev', dev_f1, c)
            print(f'train loss: {loss:.3f} / dev loss: {dev_loss:.3f}'
                  f' / dev EM: {dev_exact:.3f} / dev F1: {dev_f1:.3f}')

            if dev_f1 > max_dev_f1:
                max_dev_f1 = dev_f1
                max_dev_exact = dev_exact
                best_model = copy.deepcopy(model)

            loss = 0
            model.train()

    writer.close()
    print(f'max dev EM: {max_dev_exact:.3f} / max dev F1: {max_dev_f1:.3f}')

    return best_model
               W2V,
               MAX_LEN,
               embed_size,
               nfeat=v_texts_w2v_idxs_l_list[0].shape[1],
               nfeat_v=v_features_list[0].shape[1],
               nfeat_g=len(g_features[0]),
               nhid_vfeat=args.hidden_vfeat,
               nhid_siamese=args.hidden_siamese,
               dropout_vfeat=args.dropout_vfeat,
               dropout_siamese=args.dropout_siamese,
               nhid_final=args.hidden_final)
summarize_model(model)

if args.use_ema:
    ema = EMA(args.ema_decay)
    ema.register(model)

# optimizer and scheduler
parameters = filter(lambda p: p.requires_grad, model.parameters())
# optimizer = optim.SGD(parameters, lr=args.lr, momentum=0.9)
optimizer = optim.Adam(params=parameters,
                       lr=args.lr,
                       betas=(args.beta1, args.beta2),
                       eps=1e-8,
                       weight_decay=3e-7)
cr = 1.0 / math.log(args.lr_warm_up_num)
scheduler = None
scheduler = optim.lr_scheduler.LambdaLR(
    optimizer,
    lr_lambda=lambda ee: cr * math.log(ee + 1)
    if ee < args.lr_warm_up_num else 1)